Advertisement

Control Theory and Technology

, Volume 14, Issue 3, pp 237–249 | Cite as

Yet another tutorial of disturbance observer: robust stabilization and recovery of nominal performance

  • Hyungbo Shim
  • Gyunghoon Park
  • Youngjun Joo
  • Juhoon Back
  • Nam Hoon Jo
Article

Abstract

This paper presents a tutorial-style review on the recent results about the disturbance observer (DOB) in view of robust stabilization and recovery of the nominal performance. The analysis is based on the case when the bandwidth of Q-filter is large, and it is explained in a pedagogical manner that, even in the presence of plant uncertainties and disturbances, the behavior of real uncertain plant can be made almost similar to that of disturbance-free nominal system both in the transient and in the steady-state. The conventional DOB is interpreted in a new perspective, and its restrictions and extensions are discussed.

Keywords

Disturbance observer robust stabilization robust transient response disturbance rejection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Guo, W. Chen. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 2005, 15(3): 109–125.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    W. Chen, J. Yang, L. Guo, et al. Disturbance observer-based control and related methods: an overview. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083–1095.CrossRefGoogle Scholar
  3. [3]
    E. Sariyildiz, K. Ohnishi. A guide to design disturbance observer. Journal of Dynamic Systems, Measurement, and Control, 2014, 136(2): DOI 10.1115/1.4025801.Google Scholar
  4. [4]
    L. Guo, S. Cao. Anti-disturbance Control for Systems with Multiple Disturbances. Boca Raton: CRC Press, 2013.Google Scholar
  5. [5]
    S. Li, J. Yang, W. Chen, et al. Disturbance Observer-based Control: Methods and Applications. Boca Raton: CRC Press, 2014.Google Scholar
  6. [6]
    G. Tian, Z. Gao. From Poncelet’s invariance principle to active disturbance rejection. Proceedings of the American Control Conference, New York: IEEE, 2009: 2451–2457.Google Scholar
  7. [7]
    Z. Gao. Active disturbance rejection control: from an enduring idea to an emerging technology. Proceedings of the 10th International Workshop on Robot Motion and Control, Poznan: IEEE, 2015: 269–282.Google Scholar
  8. [8]
    Z. Gao. On the centrality of disturbance rejection in automatic control. ISA Transactions, 2014, 53(4): 850–857.CrossRefGoogle Scholar
  9. [9]
    W. Xue, Y. Huang. Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems. ISA Transactions, 2015, 58: 133–154.CrossRefGoogle Scholar
  10. [10]
    K. Ohishi, K. Ohnishi, K. Miyachi. Torque-speed regulation of DC motor based on load torque estimation method. Proceedings of JIEE International Power Electronics Conference, Tokyo, 1983: 1209–1218.Google Scholar
  11. [11]
    A. Isidori. Nonlinear Control Systems. 3rd ed. Berlin: Springer, 1995.CrossRefzbMATHGoogle Scholar
  12. [12]
    H. K. Khalil. Nonlinear Systems. 3rd ed. Englewood Cliffs: Prentice Hall, 2002.zbMATHGoogle Scholar
  13. [13]
    K. Kong, M. Tomizuka. Nominal model manipulation for enhancement of stability robustness for disturbance observerbased control systems. International Journal of Control, Automation and Systems, 2013, 11(1): 12–20.CrossRefGoogle Scholar
  14. [14]
    H. Shim, Y. Joo. State space analysis of disturbance observer and a robust stability condition. Proceedings of Conference on Decision and Control, New Orleans: IEEE, 2007: 2193–2198.Google Scholar
  15. [15]
    H. K. Khalil, L. Praly. High-gain observers in nonlinear feedback control. International Journal of Robust and Nonlinear Control, 2014, 24(6): 993–1015.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    H. Shim, N. H. Jo. An almost necessary and sufficient condition for robust stability of closed-loop systems with disturbance observer. Automatica, 2009, 45(1): 296–299.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J. Back, H. Shim. Adding robustness to nominal output-feedback controllers for uncertain nonlinear systems: a nonlinear version of disturbance observer. Automatica, 2008, 44(10): 2528–2537.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    G. Park, Y. Joo, H. Shim, et al. Rejection of polynomial-in-time disturbances via disturbance observer with guaranteed robust stability. Proceedings of Conference on Decision and Control), Maui: IEEE, 2012: 949–954.Google Scholar
  19. [19]
    Y. Joo, G. Park, J. Back, et al. Embedding internal model in disturbance observer with robust stability. IEEE Transactions on Automatic Control, 2016: 10.1109/TAC.2015.2503559.Google Scholar
  20. [20]
    Y. Joo, G. Park. Reduced order type-k disturbance observer based on generalized Q-filter design scheme. Proceedings of International Conference on Control, Automation and Systems, Korea, 2014: 1211–1216.Google Scholar
  21. [21]
    H. J. Sussmann, P. V. Kokotovic. The peaking phenomenon and the global stabilization of nonlinear systems. IEEE Transactions on Automatic Control, 1991, 36(4): 424–440.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    F. Esfandiari, H. K. Khalil. Output feedback stabilization of fully linearizable systems. International Journal Control, 1992, 56(5): 1007–1037.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    J. Back, H. Shim. An inner-loop controller guaranteeing robust transient performance for uncertain MIMO nonlinear systems. IEEE Transactions on Automatic Control, 2009, 54(7): 1601–1607.MathSciNetCrossRefGoogle Scholar
  24. [24]
    J. Back, H. Shim. Reduced-order implementation of disturbance observers for robust tracking of non-linear systems. IET Control Theory & Applications, 2014, 8(17): 1940–1948.CrossRefGoogle Scholar
  25. [25]
    J. Back, H. Shim. Robust tracking by reduced-order disturbance observer: Linear case. Proceedings of Joint Conference on Decision and Control and European Control Conference, Orlando: IEEE, 2011: 3514–3519.CrossRefGoogle Scholar
  26. [26]
    B. A. Francis, W. M. Wonham. The internal model principle of control theory. Automatica, 1976, 12(5): 457–465.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    J. Huang. Nonlinear Output Regulation: Theory and Applications. New York: SIAM, 2004.CrossRefzbMATHGoogle Scholar
  28. [28]
    L. B. Freidovich, H. K. Khalil. Performance recovery of feedbacklinearization-based designs. IEEE Transactions on Automatic Control, 2008, 53(10): 2324–2334.MathSciNetCrossRefGoogle Scholar
  29. [29]
    K. K. K. Kim, E. Kharisov, N. Hovakimyan. Filter design for L1 adaptive output-feedback controller. Proceedings of Joint Conference on Decision and Control and European Control Conference, Orlando: IEEE, 2011: 5653–5658.CrossRefGoogle Scholar
  30. [30]
    C. Cao, N. Hovakimyan. L1 adaptive output feedback controller to systems of unknown dimension. Proceedings of the American Control Conference, New York: IEEE, 2007: 1191–1196.Google Scholar
  31. [31]
    K. Yamada, S. Komada, M. Ishida, et al. Characteristics of servo system using high order disturbance observer. Proceedings of Conference on Decision and Control, Kobe: IEEE, 1996: 3252–3257.CrossRefGoogle Scholar
  32. [32]
    G. Park, Y. Joo, H. Shim. Asymptotic rejection of sinusoidal disturbances with recovered nominal transient performance for uncertain linear systems. Proceedings of Conference on Decision and Control, Los Angeles: IEEE, 2014: 4404–4409.Google Scholar
  33. [33]
    J. Han, H. Kim, Y. Joo, et al. A simple noise reduction disturbance observer and Q-filter design for internal stability. Proceedings of International Conference on Control, Automation and Systems, Gwangju: IEEE, 2013: 755–760.Google Scholar
  34. [34]
    J. Ha. Design of Nonlinear Disturbance Observer for State Feedback Based Control. Master thesis. Seoul: Seoul National University, 2014 (in Korean).Google Scholar
  35. [35]
    M. C. Yoon, J. S. Kim, J. Back. Robust stabilization of constrained uncertain linear systems using feedforward control based on high-gain disturbance observer. Proceedings of International Conference on Control, Automation and Systems, Busan: IEEE, 2015: 290–294.Google Scholar
  36. [36]
    K. J. Åström, P. Hagander, J. Sternby. Zeros of sampled systems, Automatica, 1984, 20(1): 31–38.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    J. I. Yuz, G. C. Goodwin. Sampled-data Models for Linear and Nonlinear Systems. 3rd ed. Berlin: Springer, 2014.CrossRefzbMATHGoogle Scholar
  38. [38]
    G. Park, Y. Joo, C. Lee, et al. On robust stability of disturbance observer for sampled-data systems under fast sampling: an almost necessary and sufficient condition. Proceedings of Conference on Decision and Control, Osaka: IEEE, 2015: 7536–7541.Google Scholar
  39. [39]
    N. H. Jo, Y. Joo, H. Shim. A study of disturbance observers with unknown relative degree of the plant. Automatica, 2014, 50(6): 1730–1734.MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    N. H. Jo, Y. Joo, H. Shim. Can a fast disturbance observer work under unmodeled actuators? Proceedings of International Conference on Control, Automation and Systems, Gyeonggi-do: IEEE, 2011: 561–566.Google Scholar
  41. [41]
    N. H. Jo, H. Shim, Y. I. Son. Disturbance observer for nonminimum phase linear systems. International Journal of Control, Automation and Systems, 2010, 8(5): 994–1002.CrossRefGoogle Scholar
  42. [42]
    R. D. Nussbaum. Some remarks on a conjecture in parameter adaptive control, Systems & Control Letters, 1983, 3(5): 243–246.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    H. J. Yoon. Design of Disturbance Observer with Unknown Input Gain Sign. Master thesis. Seoul: Seoul National University, 2012 (in Korean).Google Scholar
  44. [44]
    W. Xie. High frequency measurement noise rejection based on disturbance observer. Journal of the Franklin Institute, 2010, 347(10): 1825–1836.CrossRefzbMATHGoogle Scholar
  45. [45]
    N. H. Jo, H. Shim. Robust stabilization via disturbance observer with noise reduction. Proceedings of European Control Conference, Switzerland, 2013: 2861–2866.Google Scholar
  46. [46]
    J. Yi, S. Chang, Y. Shen. Disturbance-observer-based hysteresis compensation for piezoelectric actuators. IEEE/ASME Transactions on Mechatronics, 2009, 14(4): 456–464.CrossRefGoogle Scholar
  47. [47]
    J. S. Bang, H. Shim, S. K. Park, et al. Robust tracking and vibration suppression for a two-inertia system by combining backstepping approach with disturbance observer. IEEE Transactions on Industrial Electronics, 2010, 57(9): 3197–3206.CrossRefGoogle Scholar
  48. [48]
    E. Schrijver, J. Van Dijk. Disturbance observers for rigid mechanical systems: Equivalence, stability, and design. Journal of Dynamic Systems, Measurement, and Control, 2002, 124(4): 539–548.CrossRefGoogle Scholar
  49. [49]
    R. Bickel, M. Tomizuka. Passivity-based versus disturbance observer based robot control: Equivalence and stability. Journal of Dynamic Systems, Measurement, and Control, 1999, 121(1): 41–47.CrossRefGoogle Scholar
  50. [50]
    E. Sariyildiz, K. Ohnishi. Bandwidth constraints of disturbance observer in the presence of real parametric uncertainties. European Journal of Control, 2013, 19(3): 199–205.MathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    C. J. Kempf, S. Kobayashi. Disturbance observer and feedforward design for a high-speed direct-drive positioning table. IEEE Transactions on Control Systems Technology, 1999, 7(5): 513–526.CrossRefGoogle Scholar
  52. [52]
    B. A. Guvenc, L. Guvenc. Robust two degree-of-freedom addon controller design for automatic steering. IEEE Transactions on Control Systems Technology, 2002, 10(1): 137–148.CrossRefGoogle Scholar
  53. [53]
    K. S. Eom, I. H. Suh, W. K. Chung. Disturbance observer based path tracking control of robot manipulator considering torque saturation. IEEE/ASME Transactions on Mechatronics, 2001, 11(3): 325–343.Google Scholar
  54. [54]
    Y. Choi, K. Yang, W. K. Chung, et al. On the robustness and performance of disturbance observers for second-order systems. IEEE Transactions on Automatic Control, 2003, 48(2): 315–320.MathSciNetCrossRefGoogle Scholar
  55. [55]
    C.-C. Wang, M. Tomizuka. Design of robustly stable disturbance observers based on closed loop consideration using H8 optimization and its applications to motion control systems. Proceedings of the American Control Conference, New York: IEEE, 2004: 3764–3769.Google Scholar
  56. [56]
    W. Chen. Disturbance observer based control for nonlinear systems. IEEE/ASME Transactions on Mechatronics, 2004, 9(4): 706–710.CrossRefGoogle Scholar
  57. [57]
    K.-S. Kim, K.-H. Rew, S. Kim. Disturbance observer for estimating higher order disturbances in time series expansion. IEEE Transactions on Automatic Control, 2010, 55(8): 1905–1911.MathSciNetCrossRefGoogle Scholar
  58. [58]
    C. Chen. Linear System Theory and Design. 3rd ed. Oxford: Oxford University Press, 1999.Google Scholar

Copyright information

© South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hyungbo Shim
    • 1
  • Gyunghoon Park
    • 1
  • Youngjun Joo
    • 2
  • Juhoon Back
    • 3
  • Nam Hoon Jo
    • 4
  1. 1.ASRI, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of Electrical Engineering and Computer ScienceUniversity of Central FloridaOrlandoUSA
  3. 3.School of RoboticsKwangwoon UniversitySeoulKorea
  4. 4.Department of Electrical EngineeringSoongsil UniversitySeoulKorea

Personalised recommendations