Advertisement

Control Theory and Technology

, Volume 13, Issue 3, pp 266–285 | Cite as

On the use of positive feedback for improved torque control

  • Houman DallaliEmail author
  • Gustavo A. Medrano-Cerda
  • Michele Focchi
  • Thiago Boaventura
  • Marco Frigerio
  • Claudio Semini
  • Jonas Buchli
  • Darwin G. Caldwell
Article

Abstract

This paper considers the torque control problem for robots with flexible joints driven by electrical actuators. It is shown that the achievable closed-loop tracking bandwidth using PI torque controllers may be limited due to transmission zeros introduced by the load dynamics. This limitation is overcome by using positive feedback from the load motion in unison with PI torque controllers. The positive feedback is given in terms of load velocity, acceleration and jerk. Stability conditions for designing decentralized PI torque controllers are derived in terms of Routh-Hurwitz criteria. Disturbance rejection properties of the closed system are characterized and an analysis is carried out investigating the use of approximate positive feedback by omitting acceleration and/or jerk signals. The results of this paper are illustrated for a two DoF (degrees of freedom) system. Experimental results for a one DoF system are also included.

Keywords

Force-torque control load motion compensation decentralized control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Vallery, R. Ekkelenkamp, H. Van Der Kooij, et al. Passive and accurate torque control of series elastic actuators. Proceedings of the IEEE International Conference on Intelligent Robots and Systems, San Diego: IEEE, 2007: 3534–3538.Google Scholar
  2. [2]
    G. A. Pratt, M. M. Williamson. Series elastic actuators. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Los Alamitos: IEEE Computer Society, 1995: 399–406.Google Scholar
  3. [3]
    G. A Pratt, M. M. Williamson. Stiffness Isn’t Everything. Proceedings of the 4th International Symposium on Experimental Robotics IV, Berlin: Springer, 1995: 253–262.Google Scholar
  4. [4]
    S. J. Dyke, B. F. Spencer Jr., P. Quast, et al. Role of controlstructure interaction in protective system design. ASCE Journal of Engineering Mechanics, 1995, 121(2): 322–338.CrossRefGoogle Scholar
  5. [5]
    A. Alleyne, R. Liu, H. Wright. On the limitations of force tracking control for hydraulic active suspensions. Proceedings of the American Control Conference, Philadelphia: IEEE, 1999: 43–47.Google Scholar
  6. [6]
    J. Dimig, C. Shield, C. French, et al. Effective force testing: A method of seismic simulation for structural testing. ASCE Journal of Structural Engineering, 1999, 125(9): 1028–1037.CrossRefGoogle Scholar
  7. [7]
    C. K. Shield, C. W. French, J. Timm. Development and implementation of the effective force testing method for seismic simulation of large-scale structures. Philosophical Transactions of the Royal Society of London Series A–Mathematical Physical and Engineering Sciences, 2001, 359(1786): 1911–1929.CrossRefGoogle Scholar
  8. [8]
    M. Hashimoto, Y. Kiyosawa. Experimental study on torque control using harmonic drive built-in torque sensors. Journal of Robotic Systems, 1998, 15(8): 435–445.CrossRefGoogle Scholar
  9. [9]
    T. Boaventura, M. Focchi, M. Frigerio, et al. On the role of load motion compensation in high-performance force control. Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS), Algarve, Portugal: IEEE, 2012: 4066–4071.Google Scholar
  10. [10]
    C. Semini, N. G. Tsagarakis, E. Guglielmino, et al. Design of HyQ–a hydraulically and electrically actuated quadruped robot. IMechE Part I: Journal of Systems and Control Engineering, 2011, 225(I6): 831–849.Google Scholar
  11. [11]
    F. Aghili, M. Buehler, J. M. Hollerbach. Motion control systems with H8 positive joint torque feedback. IEEE Transactions on Control Systems Technology, 2001, 9(5): 685–695.CrossRefGoogle Scholar
  12. [12]
    J. S. Yeon, J. H. Park. Practical robust control for flexible joint robot manipulators. Proceedings of IEEE International Conference on Robotics and Automation, Piscataway: IEEE, 2008: 3377–3382.Google Scholar
  13. [13]
    G. Hirzinger, A. Albu-Schaeffer, M. Haehnle, et al. On a new generation of torque controlled light-weight robots. Proceedings of IEEE International Conference on Robotics and Automation, New York: IEEE, 2001: 3356–3363.Google Scholar
  14. [14]
    N. G. Tsagarakis, S. Morfey, H. Dallali, et al. An asymmetric compliant antagonistic joint design for high performance mobility. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo: IEEE, 2013: 5512–5517.Google Scholar
  15. [15]
    S. Skogestad, I. Postlethwaite. Multivariable Feedback Control: Analysis and Design. 2nd ed. New York: Wiley-Blackwell, 2007.Google Scholar
  16. [16]
    B. A. Levant. Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control. 2003: 76(9/10): 924–941.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    C. A. Levant, M. Livne. Exact differentiation of signals with unbounded higher order derivatives. IEEE Transactions on Automatic Control, 2012, 57(4): 1076–1080.MathSciNetCrossRefGoogle Scholar
  18. [18]
    E. S. Ibrir. Linear time-derivative trackers. Automatica, 2004, 40(3): 397–405.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    M. Smaoui, X. Brun, D. Thomasset. High-order sliding mode for an electropneumatic system: A robust differentiator-controller design. International Journal of Robust and Nonlinear Control, 2008, 18(4/5): 481–501.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Y. Su, C. Zheng, D. Sun, et al. A simple nonlinear velocity estimator for high-performance motion control. IEEE Transactions on Industrial Electronics, 2005, 52(4): 1161–1169.CrossRefGoogle Scholar
  21. [21]
    T. D. Tuttle, W. A. Seering. A nonlinear model of a harmonic drive gear transmission. IEEE Transactions on Robotics and Automation, 1996, 12(3): 368–374.CrossRefGoogle Scholar
  22. [22]
    E. Garcia, P. G. de Santos, C. C. de Wit. Velocity dependence in the cyclic friction arising with gears. International Journal of Robotics Research, 2002, 21(9): 761–771.CrossRefGoogle Scholar
  23. [23]
    P. Tomei. A Simple PD controller for robots with elastic joints. IEEE Transactions on Automatic Control, 1991, 36(10): 1208–1213.MathSciNetCrossRefGoogle Scholar
  24. [24]
    A. De Luca, B. Siciliano, L. Zollo. PD control with on-line gravity compensation for robots with elastic joints: Theory and experiments. Automatica, 2005, 41(10): 1809–1819.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Houman Dallali
    • 1
    Email author
  • Gustavo A. Medrano-Cerda
    • 1
  • Michele Focchi
    • 1
  • Thiago Boaventura
    • 2
  • Marco Frigerio
    • 1
  • Claudio Semini
    • 1
  • Jonas Buchli
    • 2
  • Darwin G. Caldwell
    • 1
  1. 1.Department of Advanced RoboticsIstituto Italiano di Tecnologia (IIT)GenovaItaly
  2. 2.Agile and Dexterous Robotics LabInstitute of Robotics and Intelligent SystemsETH ZürichSwitzerland

Personalised recommendations