Advertisement

Journal of Control Theory and Applications

, Volume 8, Issue 3, pp 317–325 | Cite as

A gain-varying UIO approach with adaptive threshold for FDI of nonlinear F16 systems

  • Jun XuEmail author
  • Kai Yew Lum
  • Ai Poh Loh
Article

Abstract

A discrete gain-varying unknown input observer (UIO) method is presented for actuator fault detection and isolation (FDI) problems in this paper. A novel residual scheme together with a moving horizon threshold is proposed. This design methodology is applied to a nonlinear F16 system with polynomial aerodynamics coefficient expressions, where the coefficient expressions for the F16 system and UIOs may be slightly different. The simulation results illustrate that a satisfactory FDI performance can be achieved even when the F16 system is under the environment of model uncertainties, exogenous noise and measurement errors.

Keywords

Fault detection and isolation (FDI) Unknown input observer (UIO) Nonlinear estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. A. Morelli. Global nonlinear parametric modeling with application to F-16 aerodynamics[C]//Proceedings of American Control Conference. New York: IEEE, 1998: 997–1001.Google Scholar
  2. [2]
    B. L. Stevens, F. L. Lewis. Aircraft Control and Simulation[M]. New York: John Wiley & Sons, 2003.Google Scholar
  3. [3]
    F. L. Lewis, L. Xie, D. Popa. Optimal and Robust Estimation with An Introduction to Stochastic Control Theory[M]. 2nd ed. Oxford: Taylor & Francis, 2007.Google Scholar
  4. [4]
    L. Fridman, Y. Shtessel, C. Edwards, et al. Higher order sliding mode observer for state estimation and input reconstruction in nonlinear systems[J]. International Journal of Robust and Nonlinear Control, 2007, 18(4/5): 399–412.MathSciNetGoogle Scholar
  5. [5]
    G. Ducard, H. P. Greering. Efficient nonlinear actuator fault detection and isolation system for unmaned aerial vehicles[J]. Journal of Guidance, Control and Dynamics, 2008, 31(1): 225–237.CrossRefGoogle Scholar
  6. [6]
    D. Rupp, G. Ducard, E. Shafai, et al. Extended multiple model adaptive estimation for the detection of sensor and actuator faults[C]//Proceedings of Conference on Decision and Control. New York: IEEE, 2005: 3079–3084.CrossRefGoogle Scholar
  7. [7]
    F. Amato, M. Mattei. Design of full-order unknown input observers with H performance[C]//Proceedings of the 2002 IEEE International Conference on Control Applications. New York: IEEE, 2002: 74–75.Google Scholar
  8. [8]
    J. Chen, R. J. Patton. Robust Model-based Fault Diagnosis for Dynamic Systems[M]. Boston: Kluwer Academic Publishers, 1999.Google Scholar
  9. [9]
    W. Chen, M. Saif. Unknown input observer design for a class of nonlinear systems: an LMI approach[C]//Proceedings of American Control Conference. New York: IEEE, 2006: 834–838.CrossRefGoogle Scholar
  10. [10]
    A. M. Pertew, H. J. Marquez, Q. Zhao. Design of unknown input observers for lipschitz nonlinear systems[C]//Proceedings of American Control Conference. New York: IEEE, 2005: 4198–4203.CrossRefGoogle Scholar
  11. [11]
    K. Watanabe, D. M. Himmelblau. Instrument fault detection in systems with uncertainties[J]. International Journal of System Science, 1982, 12(2): 137–158.CrossRefGoogle Scholar
  12. [12]
    L. Sonneveldt. Nonlinear F-16 Model Description[R]. Software manual. The Netherlands: Delft University of Technology, 2006.Google Scholar
  13. [13]
    L. T. Nguyen, M. E. Ogburn, W. P. Gilbert, et al. Simulator Study of Stall/Post Stall Characteristics of Fighter Airplane with Relaxed Longitudinal Stability[R]. NASA, 1979.Google Scholar
  14. [14]
    J. Xu, K. Y. Lum, A. P. Loh. A Discrete Gain-varying UIO Approach for FDI of UAV Systems[R]. Technical Report TL/CG/2009/003. Singapore: Temasek laboratories, National University of Singapore, 2009.Google Scholar
  15. [15]
    P. A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization[D]. Ph.D. thesis. Pasadena: California Institute of Technology, 2000.Google Scholar
  16. [16]
    J. Xu, L. Xie, Y. Wang. Simultaneous stabilization and robust control for uncertain nonlinear systems using SOS[J]. IEEE Transactions on Automatic Control, 2009, 54(8): 1892–1897.CrossRefMathSciNetGoogle Scholar
  17. [17]
    A. Saltelli, K. Chan, E. M. Scott (Eds.). Sensitivity Analysis (Wiley Series in Probability and Statistics)[M]. New York: John Wiley & Sons, 2000.Google Scholar
  18. [18]
    R. Durrentt. Probability: Theory and Examples[M]. Pacific Grove, CA: Duxbury Press, 2005.Google Scholar

Copyright information

© South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Temasek LaboratoriesNational University of SingaporeSingaporeSingapore
  2. 2.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations