# Identification of variable coefficients for vibrating systems by boundary control and observation

## Abstract

We consider the identification problem of coefficients for vibrating systems described by a Euler-Bernoulli beam equation or a string equation, with one end clamped and with an input exerted on the other end. For the beam equation, the observations are the velocity and the angle velocity at the free end, while for the string equation, the observation is the velocity at the free end. In the framework of well-posed linear system theory, we show that both the density and the flexural rigidity of the beam, and the tension of the string, can be uniquely determined by the observations for all positive times. Moreover, a general constructive method is developed to show that the mass density and the elastic modulus of the string are not determined by the observation.

## Keywords

Beam equation Identifiability Well-posedness Variable coefficients Inverse problem## Preview

Unable to display preview. Download preview PDF.

## References

- [1]S. Kitamura, S. Nakagiri. Identifiability of spatially-varying and constant parameters in distributed systems of parabolic type[J].
*SIAM Journal on Control and Optimization*. 1977, 15(5): 785–802.zbMATHCrossRefMathSciNetGoogle Scholar - [2]J. Chang, B. Guo. Identification of variable spacial coefficients for a beam equation from boundary measurements[J].
*Automatica*, 2007, 43(4): 732–737.zbMATHCrossRefMathSciNetGoogle Scholar - [3]R. F. Curtain. The Salamon-Weiss class of well-posed infinite-dimensional linear systems: A survey[J].
*IMA Journal of Mathematical Control and Information*, 1997, 14(2): 207–223.zbMATHCrossRefMathSciNetGoogle Scholar - [4]A. Katchalov, Y. Kurylev, M. Lassas, et al. Equivalence of time-domain inverse problems and boundary spectral problems[J].
*Inverse Problems*, 2004, 20(2): 419–436.zbMATHCrossRefMathSciNetGoogle Scholar - [5]V. Barcilon. Inverse problem for the vibrating beam in the free-clamped configuration[J].
*Philosophical Transactions of the Royal Society of London, Series A*, 1982, 304(1483): 211–251.zbMATHCrossRefGoogle Scholar - [6]V. Barcilon. Inverse eigenvalue problems[M]//
*Inverse Problems, Lecture Notes in Mathematics, 1225*. G. Talenti, ed. Berlin: Springer, 1986: 1–51.Google Scholar - [7]G. M. L. Gladwell.
*Inverse Problems in Vibration*[M]. 2nd ed. Dordrecht: Kluwer Academic Publishers, 2004.Google Scholar - [8]B. Guo. Riesz basis property and exponential stability of controlled Euler-Bernoulli beam equations with variable coefficients[J].
*SIAM Journal on Control and Optimization*, 2002, 40(6): 1905–1923.zbMATHCrossRefMathSciNetGoogle Scholar - [9]B. Guo, Y. Luo. Controllability and stability of a second order hyperbolic system with collocated sensor/actuator[J].
*Systems & Control Letters*, 2002, 46(1): 45–65.zbMATHCrossRefMathSciNetGoogle Scholar - [10]B. Guo, Y. Luo. Riesz basis property of a second order hyperbolic system with collocated scalar input/output[J].
*IEEE Transactions on Automatic Control*, 2002, 47(4): 693–698.CrossRefMathSciNetGoogle Scholar - [11]L. F. Ho, D. L. Russell. Admissible input elements for systems in Hilbert space and a Carleson measure criterion[J].
*SIAM Journal on Control and Optimization*, 1983, 21(4): 614–640.zbMATHCrossRefMathSciNetGoogle Scholar - [12]G. Weiss. Admissibility of unbounded control operators[J].
*SIAM Journal on Control and Optimization*, 1989, 27(3): 527–545.zbMATHCrossRefMathSciNetGoogle Scholar - [13]G. Weiss. Transfer functions of regular linear systems I: Characterizations of regularity[J].
*Transactions of the American Mathematical Society*, 1994, 342(2): 827–854.zbMATHCrossRefMathSciNetGoogle Scholar - [14]S. A. Avdonin, S. A. Ivanov,
*Families of Exponentials the Method of Moments in Controllability Problems for Distributed Parameter Systems*[M]. New York: Cambridge University, 1995.Google Scholar - [15]E. L. Ince.
*Ordinary Differential Equations*[M]. New York: Dover, 1944.Google Scholar - [16]C. Kravaris, J. H. Seinfeld. Identifiability of spatially-varying conductivity from point observation as an inverse Sturm-Liouville problem[J].
*SIAM Journal on Control and Optimization*, 1986, 24(3): 522–542.zbMATHCrossRefMathSciNetGoogle Scholar - [17]A. Katchalov, Y. Kurylev, M. Lassas. Inverse boundary spectral problems[M]//
*Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123*, Boca Raton, Florida: Chapman & Hall/CRC, 2001.Google Scholar