Advertisement

Inference for a truncated positive normal distribution

  • Héctor J. GómezEmail author
  • Neveka M. Olmos
  • Héctor Varela
  • Heleno Bolfarine
Article
  • 66 Downloads

Abstract

The main object of this paper is to study an extension of the half normal distribution defined by adding a positive truncation to it. The new model is more flexible than the half-normal distribution and contains the half normal distribution as a special case. Properties of this distribution, such as moments, hazard function and entropy are studied and parameters estimation is dealt with by using moments and maximum likelihood. A real data application indicates good fit performance of the new model when compared to other competitors in literatures.

Keywords

half-normal distribution maximum likelihood truncation 

MR Subject Classification

62E15 62F10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors acknowledge helpful comments and suggestions by the referee which substantially improved the presentation. The research of HJGómez, NMOlmos and HVarela was supported by SEMILLERO-UA2014 (Chile). The research of HBolfarine was supported by CNPq and Fapesp (Brasil).

References

  1. [1]
    M Ahsanullah, B M Golam Kibria, M Shakil. Normal and Student’s t Distributions and Their Applications, Atlantis Press, 2014.CrossRefzbMATHGoogle Scholar
  2. [2]
    H Akaike. A new look at the statistical model identification, IEEE Trans Automat Control, 1974, 19(6): 716–723.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    D G Altman. Construction of age-related reference centiles using absolute residuals, Stat Med, 1993, 12(10): 917–924.CrossRefGoogle Scholar
  4. [4]
    I Barranco-Chamorro, J L Moreno-Rebollo, A Pascual-Acosta, A Enguix-Gonzalez. An overview of asymptotic properties of estimator in truncated distributions, Comm Statist Theory Methods, 2007, 36(13): 2351–2366.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J M Bland. The Half-Normal distribution method for measurement error: two case studies, 2005, Unpublished lecture available on http://www-users.york.ac.uk/m̃b55/talks/halfnor.pdfGoogle Scholar
  6. [6]
    J M Bland, D G Altman. Measuring agreement in method comparison studies, Stat Methods Med Res, 1999, 8: 135–160.CrossRefGoogle Scholar
  7. [7]
    C E Bonferroni. Elmenti di statistica generale, Libreria Seber, Firenze, 1930.Google Scholar
  8. [8]
    C S Coffey, J A Kairalla, K E Muller. Practical methods for bounding type I error rate with an internal pilot design, Comm Statist Theory Methods, 2007, 36(11): 2143–2157.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    K Cooray, M M A Ananda. A generalization of the half-normal distribution with applications to lifetime data, Comm Statist Theory Methods, 2008, 37: 1323–1337.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    G Chen, N Balakrishnan. A general purpose approximate goodness-of-fit test, J Qual Technol, 1995, 27: 154–161.CrossRefGoogle Scholar
  11. [11]
    Y Y Chen, H J Wang. A method of moments estimator for a stochastic frontier model with errors in variables, Econom Lett, 2004, 85(2): 221–228.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    C Y Chou, H R Liu. Properties of the half-normal distribution and its application to quality control, J Ind Technol, 1998, 14(13): 4–7.Google Scholar
  13. [13]
    R E Glaser. Bathtub and related failure rate characterizations, J Amer Statist Assoc, 1980, 75: 667–672.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    N L Jonhson, S Kotz, N Balakrishnan. Continuous Univariate Distributions, Vol 2, 2nd ed, Wiley, New York, 1995.Google Scholar
  15. [15]
    J F Lawless. Statistical models and methods for lifetime data, 2nd ed, Wiley, New York, 2003.zbMATHGoogle Scholar
  16. [16]
    N M Olmos, H Varela, H W Gómez, H Bolfarine. An extension of the half-normal distribution, Statist Papers, 2012, 53: 875–886.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A Pewsey. Large-sample inference for the general half-normal distribution, Comm Statist Theory Methods, 2002, 31: 1045–1054.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A Pewsey. Improved likelihood based inference for the general half-normal distribution, Comm Statist Theory Methods, 2004, 33(2): 197–204.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    E W Weisstein. Half-normal distribution, 2007, http://mathworld.wolfram.com Google Scholar
  20. [20]
    M P Wiper, F J Girón, A Pewsey. Objective Bayesian inference for the half-normal and half-t distributions, Comm Statist Theory Methods, 2008, 193: 3165–3185.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Editorial Committee of Applied Mathematics-A Journal of Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Héctor J. Gómez
    • 1
    Email author
  • Neveka M. Olmos
    • 2
  • Héctor Varela
    • 2
  • Heleno Bolfarine
    • 3
  1. 1.Departamento de Ciencias Matemáticas y Físicas, Facultad de IngenieríaUniversidad Católica de TemucoTemucoChile
  2. 2.Departamento de Matemáticas, Facultad de Ciencias BásicasUniversidad de AntofagastaAntofagastaChile
  3. 3.Departamento de Estatística, IMEUniversidade de São PauloSão PauloBrazil

Personalised recommendations