Journal of Cancer Survivorship

, Volume 10, Issue 3, pp 467–479 | Cite as

The influence of high-intensity compared with moderate-intensity exercise training on cardiorespiratory fitness and body composition in colorectal cancer survivors: a randomised controlled trial

  • James L. DevinEmail author
  • Andrew T. Sax
  • Gareth I. Hughes
  • David G. Jenkins
  • Joanne F. Aitken
  • Suzanne K. Chambers
  • Jeffrey C. Dunn
  • Kate A. Bolam
  • Tina L. Skinner



Following colorectal cancer diagnosis and anti-cancer therapy, declines in cardiorespiratory fitness and body composition lead to significant increases in morbidity and mortality. There is increasing interest within the field of exercise oncology surrounding potential strategies to remediate these adverse outcomes. This study compared 4 weeks of moderate-intensity exercise (MIE) and high-intensity exercise (HIE) training on peak oxygen consumption (V̇O2peak) and body composition in colorectal cancer survivors.


Forty seven post-treatment colorectal cancer survivors (HIE = 27 months post-treatment; MIE = 38 months post-treatment) were randomised to either HIE [85–95 % peak heart rate (HRpeak)] or MIE (70 % HRpeak) in equivalence with current physical activity guidelines and completed 12 training sessions over 4 weeks.


HIE was superior to MIE in improving absolute (p = 0.016) and relative (p = 0.021) V̇O2peak. Absolute (+0.28 L.min−1, p < 0.001) and relative (+3.5−1.min−1, p < 0.001) V̇O2 peak were increased in the HIE group but not the MIE group following training. HIE led to significant increases in lean mass (+0.72 kg, p = 0.002) and decreases in fat mass (−0.74 kg, p < 0.001) and fat percentage (−1.0 %, p < 0.001), whereas no changes were observed for the MIE group. There were no severe adverse events.


In response to short-term training, HIE is a safe, feasible and efficacious intervention that offers clinically meaningful improvements in cardiorespiratory fitness and body composition for colorectal cancer survivors.

Implications for Cancer Survivors

HIE appears to offer superior improvements in cardiorespiratory fitness and body composition in comparison to current physical activity recommendations for colorectal cancer survivors and therefore may be an effective clinical utility following treatment.


Colorectal cancer [MESH] Exercise [MESH] Exercise oncology High-intensity exercise Cardiorespiratory fitness Body composition [MESH] 


Compliance with ethical standards


This study was funded by Queensland Health (Remserv) (project number 2013001802).

Jenkins D, Skinner T, Bolam K, Chambers S, Owens J and Gatford J. (2013–2014). What exercise is the most effective in improving the health of colorectal cancer survivors? Queensland Health (Remserv), AU$19,000

Conflict of interest

The authors declare that they have no competing interests.

Statement of human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Human Ethics Committee of the University of Queensland and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Written and informed consent was obtained from all individual participants included in the study.


  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer J Int Cancer. 2015;136(5):E359–86. doi: 10.1002/ijc.29210.CrossRefGoogle Scholar
  2. 2.
    Jones LW, Peppercorn J. Exercise research: early promise warrants further investment. Lancet Oncol. 2010;11(5):408–10. doi: 10.1016/S1470-2045(10)70094-2.CrossRefPubMedGoogle Scholar
  3. 3.
    Lakoski SG, Eves ND, Douglas PS, Jones LW. Exercise rehabilitation in patients with cancer. Nat Rev Clin Oncol. 2012;9(5):288–96. doi: 10.1038/nrclinonc.2012.27.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lakoski SG, Willis BL, Barlow CE, et al. Midlife cardiorespiratory fitness, incident cancer, and survival after cancer in men: The Cooper Center longitudinal study. JAMA Oncol. 2015. doi: 10.1001/jamaoncol.2015.0226.PubMedGoogle Scholar
  5. 5.
    Zhang P, Sui X, Hand GA, Hebert JR, Blair SN. Association of changes in fitness and body composition with cancer mortality in men. Med Sci Sports Exerc. 2014;46(7):1366–74. doi: 10.1249/mss.0000000000000225.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Farrell SW, Finley CE, McAuley PA, Frierson GM. Cardiorespiratory fitness, different measures of adiposity, and total cancer mortality in women. Obesity (Silver Spring, Md). 2011;19(11):2261–7. doi: 10.1038/oby.2010.345.CrossRefGoogle Scholar
  7. 7.
    Schmid D, Leitzmann MF. Cardiorespiratory fitness as predictor of cancer mortality: a systematic review and meta-analysis. Ann Oncol : Off J Eur Soc Med Oncol / ESMO. 2015;26(2):272–8. doi: 10.1093/annonc/mdu250.CrossRefGoogle Scholar
  8. 8.
    West MA, Lythgoe D, Barben CP, Noble L, Kemp GJ, Jack S, et al. Cardiopulmonary exercise variables are associated with postoperative morbidity after major colonic surgery: a prospective blinded observational study. Br J Anaesth. 2014;112(4):665–71. doi: 10.1093/bja/aet408.CrossRefPubMedGoogle Scholar
  9. 9.
    West MA, Parry MG, Lythgoe D, Barben CP, Kemp GJ, Grocott MP, et al. Cardiopulmonary exercise testing for the prediction of morbidity risk after rectal cancer surgery. Br J Surg. 2014;101(9):1166–72. doi: 10.1002/bjs.9551.CrossRefPubMedGoogle Scholar
  10. 10.
    West MA, Loughney L, Barben CP, Sripadam R, Kemp GJ, Grocott MP, et al. The effects of neoadjuvant chemoradiotherapy on physical fitness and morbidity in rectal cancer surgery patients. Eur J Surg Oncol : J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2014;40(11):1421–8. doi: 10.1016/j.ejso.2014.03.021.CrossRefGoogle Scholar
  11. 11.
    West MA, Loughney L, Lythgoe D, Barben CP, Adams VL, Bimson WE, et al. The effect of neoadjuvant chemoradiotherapy on whole-body physical fitness and skeletal muscle mitochondrial oxidative phosphorylation in vivo in locally advanced rectal cancer patients—an observational pilot study. PLoS One. 2014;9(12), e111526. doi: 10.1371/journal.pone.0111526.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fearon K, Arends J, Baracos V. Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol. 2013;10(2):90–9. doi: 10.1038/nrclinonc.2012.209.CrossRefPubMedGoogle Scholar
  13. 13.
    Aoyagi T, Terracina KP, Raza A, Matsubara H, Takabe K. Cancer cachexia, mechanism and treatment. World J Gastrointest Oncol. 2015;7(4):17–29. doi: 10.4251/wjgo.v7.i4.17.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95. doi: 10.1016/S1470-2045(10)70218-7.CrossRefPubMedGoogle Scholar
  15. 15.
    Thoresen L, Frykholm G, Lydersen S, Ulveland H, Baracos V, Prado CMM, et al. Nutritional status, cachexia and survival in patients with advanced colorectal carcinoma. Different assessment criteria for nutritional status provide unequal results. Clin Nutr. 2013;32(1):65–72. doi: 10.1016/j.clnu.2012.05.009.CrossRefPubMedGoogle Scholar
  16. 16.
    Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–35. doi: 10.1016/s1470-2045(08)70153-0.CrossRefPubMedGoogle Scholar
  17. 17.
    Alves CR, da Cunha TF, da Paixao NA, Brum PC. Aerobic exercise training as therapy for cardiac and cancer cachexia. Life Sci. 2015;125:9–14. doi: 10.1016/j.lfs.2014.11.029.CrossRefPubMedGoogle Scholar
  18. 18.
    Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2013. doi: 10.1136/bjsports-2013-092576.PubMedGoogle Scholar
  19. 19.
    Sellar CM, Bell GJ, Haennel RG, Au HJ, Chua N, Courneya KS. Feasibility and efficacy of a 12-week supervised exercise intervention for colorectal cancer survivors. Appl Physiol Nutr Meta. 2014;39(6):715–23. doi: 10.1139/apnm-2013-0367.CrossRefGoogle Scholar
  20. 20.
    Hawkes AL, Chambers SK, Pakenham KI, Patrao TA, Baade PD, Lynch BM, et al. Effects of a telephone-delivered multiple health behavior change intervention (CanChange) on health and behavioral outcomes in survivors of colorectal cancer: a randomized controlled trial. J Clin Oncol : Off J Am Soc Clin Oncol. 2013;31(18):2313–21. doi: 10.1200/jco.2012.45.5873.CrossRefGoogle Scholar
  21. 21.
    Lynch BM, Baade P, Fritschi L, Leggett B, Owen N, Pakenham K, et al. Modes of presentation and pathways to diagnosis of colorectal cancer in Queensland. Med J Aust. 2007;186(6):288–91.PubMedGoogle Scholar
  22. 22.
    American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. Philadelphia: Lippincott Williams & Wilkins; 2014.Google Scholar
  23. 23.
    Wasserman K, Hansen J, Sue D, Casaburi R, Whipp B. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.Google Scholar
  24. 24.
    Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81. doi: 10.1249/00005768-198205000-00012.CrossRefPubMedGoogle Scholar
  25. 25.
    Godin G, Shephard RJ. A simple method to assess exercise behavior in the community. Can J Appl Sport Sci J Can Sci Appl Sport. 1985;10(3):141–6.Google Scholar
  26. 26.
    Miller DJ. Comparison of activity levels using the Caltrac accelerometer and five questionnaires. Med Sci Sports Exerc. 1994;26(3):376–82.CrossRefPubMedGoogle Scholar
  27. 27.
    Rauh M, Hovell MF, Hofstetter CR, Sallis JF, Gleghorn A. Reliability and validity of self-reported physical activity in Latinos. Int J Epidemiol. 1992;21(5):966–71. doi: 10.1093/ije/21.5.966.CrossRefPubMedGoogle Scholar
  28. 28.
    Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvao DA, Pinto BM, et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):1409–26. doi: 10.1249/MSS.0b013e3181e0c112.CrossRefPubMedGoogle Scholar
  29. 29.
    Buffart LM, Galvao DA, Brug J, Chinapaw MJ, Newton RU. Evidence-based physical activity guidelines for cancer survivors: current guidelines, knowledge gaps and future research directions. Cancer Treat Rev. 2014;40(2):327–40. doi: 10.1016/j.ctrv.2013.06.007.CrossRefPubMedGoogle Scholar
  30. 30.
    Courneya KS, Friedenreich CM, Quinney HA, Fields ALA, Jones LW, Fairey AS. A randomized trial of exercise and quality of life in colorectal cancer survivors. Eur J Cancer Care. 2003;12(4):347–57. doi: 10.1046/j.1365-2354.2003.00437.x.CrossRefGoogle Scholar
  31. 31.
    Pinto BM, Papandonatos GD, Goldstein MG, Marcus BH, Farrell N. Home-based physical activity intervention for colorectal cancer survivors. Psycho-Oncology. 2013;22(1):54–64. doi: 10.1002/pon.2047.CrossRefPubMedGoogle Scholar
  32. 32.
    Cramer H, Lauche R, Klose P, Dobos G, Langhorst J. A systematic review and meta-analysis of exercise interventions for colorectal cancer patients. Eur J Cancer Care (Engl). 2014;23(1):3–14. doi: 10.1111/ecc.12093.CrossRefGoogle Scholar
  33. 33.
    Halliwill JR, Sieck DC, Romero SA, Buck TM, Ely MR. Blood pressure regulation X: what happens when the muscle pump is lost? Post-exercise hypotension and syncope. Eur J Appl Physiol. 2014;114(3):561–78. doi: 10.1007/s00421-013-2761-1.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Brito Ade F, de Oliveira CV, Santos Mdo S, Santos AC. High-intensity exercise promotes postexercise hypotension greater than moderate intensity in elderly hypertensive individuals. Clin Physiol Funct Imaging. 2014;34(2):126–32. doi: 10.1111/cpf.12074.CrossRefPubMedGoogle Scholar
  35. 35.
    Jordan J, Shannon JR, Black BK, Ali Y, Farley M, Costa F, et al. The pressor response to water drinking in humans: a sympathetic reflex? Circulation. 2000;101(5):504–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Endo MY, Kajimoto C, Yamada M, Miura A, Hayashi N, Koga S, et al. Acute effect of oral water intake during exercise on post-exercise hypotension. Eur J Clin Nutr. 2012;66(11):1208–13. doi: 10.1038/ejcn.2012.139.CrossRefPubMedGoogle Scholar
  37. 37.
    de Oliveira EP, Burini RC, Jeukendrup A. Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sports Med. 2014;44 Suppl 1:79–85. doi: 10.1007/s40279-014-0153-2.CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Bourke L, Thompson G, Gibson DJ, Daley A, Crank H, Adam I, et al. Pragmatic lifestyle intervention in patients recovering from colon cancer: a randomized controlled pilot study. Arch Phys Med Rehabil. 2011;92(5):749–55. doi: 10.1016/j.apmr.2010.12.020.CrossRefPubMedGoogle Scholar
  39. 39.
    Jones LW, Liang Y, Pituskin EN, Battaglini CL, Scott JM, Hornsby WE, et al. Effect of exercise training on peak oxygen consumption in patients with cancer: a meta-analysis. Oncologist. 2011;16(1):112–20. doi: 10.1634/theoncologist.2010-0197.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Allgayer H, Nicolaus S, Schreiber S. Decreased interleukin-1 receptor antagonist response following moderate exercise in patients with colorectal carcinoma after primary treatment. Cancer Detect Prev. 2004;28(3):208–13. doi: 10.1016/j.cdp.2004.02.001.CrossRefPubMedGoogle Scholar
  41. 41.
    Allgayer H, Owen RW, Nair J, Spiegelhalder B, Streit J, Reichel C, et al. Short-term moderate exercise programs reduce oxidative DNA damage as determined by high-performance liquid chromatography-electrospray ionization-mass spectrometry in patients with colorectal carcinoma following primary treatment. Scand J Gastroenterol. 2008;43(8):971–8. doi: 10.1080/00365520701766111.CrossRefPubMedGoogle Scholar
  42. 42.
    Lee DH, Kim JY, Lee MK, Lee C, Min JH, Jeong DH, et al. Effects of a 12-week home-based exercise program on the level of physical activity, insulin, and cytokines in colorectal cancer survivors: a pilot study. Support Care Cancer. 2013;21(9):2537–45. doi: 10.1007/s00520-013-1822-7.CrossRefPubMedGoogle Scholar
  43. 43.
    Strasser B, Steindorf K, Wiskemann J, Ulrich CM. Impact of resistance training in cancer survivors: a meta-analysis. Med Sci Sports Exerc. 2013;45(11):2080–90. doi: 10.1249/MSS.0b013e31829a3b63.CrossRefPubMedGoogle Scholar
  44. 44.
    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part I: cardiopulmonary emphasis. Sports Med (Auckland, NZ). 2013;43(5):313–38. doi: 10.1007/s40279-013-0029-x.CrossRefGoogle Scholar
  45. 45.
    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med (Auckland, NZ). 2013;43(10):927–54. doi: 10.1007/s40279-013-0066-5.CrossRefGoogle Scholar
  46. 46.
    Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med (Auckland, NZ). 2002;32(1):53–73.CrossRefGoogle Scholar
  47. 47.
    Laursen PB, Blanchard MA, Jenkins DG. Acute high-intensity interval training improves Tvent and peak power output in highly trained males. Can J Appl Physiol. 2002;27(4):336–48.CrossRefPubMedGoogle Scholar
  48. 48.
    MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol (Bethesda, Md : 1985). 1998;84(6):2138–42.Google Scholar
  49. 49.
    Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077–84. doi: 10.1113/jphysiol.2011.224725.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1303–10. doi: 10.1152/ajpregu.00538.2010.CrossRefPubMedGoogle Scholar
  51. 51.
    Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J Appl Physiol (Bethesda, Md : 1985). 2009;106(3):929–34. doi: 10.1152/japplphysiol.90880.2008.CrossRefGoogle Scholar
  52. 52.
    Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol. 2010;588(6):1011–22. doi: 10.1113/jphysiol.2009.181743.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wisløff U, Støylen A, Loennechen JP, Bruvold M, Rognmo Ø, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94. doi: 10.1161/circulationaha.106.675041.CrossRefPubMedGoogle Scholar
  54. 54.
    Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res / Natl Strength Cond Assoc. 2010;24(10):2857–72. doi: 10.1519/JSC.0b013e3181e840f3.CrossRefGoogle Scholar
  55. 55.
    Schoenfeld BJ. Postexercise hypertrophic adaptations: a reexamination of the hormone hypothesis and its applicability to resistance training program design. J Strength Cond Res / Natl Strength Cond Assoc. 2013;27(6):1720–30. doi: 10.1519/JSC.0b013e31828ddd53.CrossRefGoogle Scholar
  56. 56.
    Boutcher SH. High-intensity intermittent exercise and fat loss. J Obes. 2011;2011:868305. doi: 10.1155/2011/868305.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jacobs RA, Fluck D, Bonne TC, Burgi S, Christensen PM, Toigo M, et al. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol (Bethesda, Md : 1985). 2013;115(6):785–93. doi: 10.1152/japplphysiol.00445.2013.CrossRefGoogle Scholar
  58. 58.
    Tjønna AE, Lee SJ, Rognmo Ø, Stølen T, Bye A, Haram PM, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118(4):346–54. doi: 10.1161/CIRCULATIONAHA.108.772822.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Boyle T, Lynch BM, Courneya KS, Vallance JK. Agreement between accelerometer-assessed and self-reported physical activity and sedentary time in colon cancer survivors. Support Care Cancer : Off J Multinatl Assoc Support Care Cancer. 2015;23(4):1121–6. doi: 10.1007/s00520-014-2453-3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • James L. Devin
    • 1
    Email author
  • Andrew T. Sax
    • 1
  • Gareth I. Hughes
    • 1
  • David G. Jenkins
    • 1
  • Joanne F. Aitken
    • 3
    • 4
  • Suzanne K. Chambers
    • 3
    • 4
    • 5
    • 6
    • 7
  • Jeffrey C. Dunn
    • 3
    • 4
    • 8
  • Kate A. Bolam
    • 1
    • 2
  • Tina L. Skinner
    • 1
  1. 1.School of Human Movement and Nutrition SciencesThe University of QueenslandBrisbaneAustralia
  2. 2.Åstrand Laboratory of Work PhysiologyThe Swedish School of Sport and Health SciencesStockholmSweden
  3. 3.Menzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
  4. 4.Cancer Research Centre, Cancer Council QueenslandBrisbaneAustralia
  5. 5.Prostate Cancer Foundation of AustraliaSydneyAustralia
  6. 6.Health and Wellness InstituteEdith Cowan UniversityPerthAustralia
  7. 7.Centre for Clinical ResearchThe University of QueenslandBrisbaneAustralia
  8. 8.School of Social ScienceThe University of QueenslandBrisbaneAustralia

Personalised recommendations