Skip to main content

Advertisement

Log in

The influence of high-intensity compared with moderate-intensity exercise training on cardiorespiratory fitness and body composition in colorectal cancer survivors: a randomised controlled trial

  • Published:
Journal of Cancer Survivorship Aims and scope Submit manuscript

Abstract

Purpose

Following colorectal cancer diagnosis and anti-cancer therapy, declines in cardiorespiratory fitness and body composition lead to significant increases in morbidity and mortality. There is increasing interest within the field of exercise oncology surrounding potential strategies to remediate these adverse outcomes. This study compared 4 weeks of moderate-intensity exercise (MIE) and high-intensity exercise (HIE) training on peak oxygen consumption (V̇O2peak) and body composition in colorectal cancer survivors.

Methods

Forty seven post-treatment colorectal cancer survivors (HIE = 27 months post-treatment; MIE = 38 months post-treatment) were randomised to either HIE [85–95 % peak heart rate (HRpeak)] or MIE (70 % HRpeak) in equivalence with current physical activity guidelines and completed 12 training sessions over 4 weeks.

Results

HIE was superior to MIE in improving absolute (p = 0.016) and relative (p = 0.021) V̇O2peak. Absolute (+0.28 L.min−1, p < 0.001) and relative (+3.5 ml.kg−1.min−1, p < 0.001) V̇O2 peak were increased in the HIE group but not the MIE group following training. HIE led to significant increases in lean mass (+0.72 kg, p = 0.002) and decreases in fat mass (−0.74 kg, p < 0.001) and fat percentage (−1.0 %, p < 0.001), whereas no changes were observed for the MIE group. There were no severe adverse events.

Conclusions

In response to short-term training, HIE is a safe, feasible and efficacious intervention that offers clinically meaningful improvements in cardiorespiratory fitness and body composition for colorectal cancer survivors.

Implications for Cancer Survivors

HIE appears to offer superior improvements in cardiorespiratory fitness and body composition in comparison to current physical activity recommendations for colorectal cancer survivors and therefore may be an effective clinical utility following treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer J Int Cancer. 2015;136(5):E359–86. doi:10.1002/ijc.29210.

    Article  CAS  Google Scholar 

  2. Jones LW, Peppercorn J. Exercise research: early promise warrants further investment. Lancet Oncol. 2010;11(5):408–10. doi:10.1016/S1470-2045(10)70094-2.

    Article  PubMed  Google Scholar 

  3. Lakoski SG, Eves ND, Douglas PS, Jones LW. Exercise rehabilitation in patients with cancer. Nat Rev Clin Oncol. 2012;9(5):288–96. doi:10.1038/nrclinonc.2012.27.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lakoski SG, Willis BL, Barlow CE, et al. Midlife cardiorespiratory fitness, incident cancer, and survival after cancer in men: The Cooper Center longitudinal study. JAMA Oncol. 2015. doi:10.1001/jamaoncol.2015.0226.

    PubMed  Google Scholar 

  5. Zhang P, Sui X, Hand GA, Hebert JR, Blair SN. Association of changes in fitness and body composition with cancer mortality in men. Med Sci Sports Exerc. 2014;46(7):1366–74. doi:10.1249/mss.0000000000000225.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Farrell SW, Finley CE, McAuley PA, Frierson GM. Cardiorespiratory fitness, different measures of adiposity, and total cancer mortality in women. Obesity (Silver Spring, Md). 2011;19(11):2261–7. doi:10.1038/oby.2010.345.

    Article  Google Scholar 

  7. Schmid D, Leitzmann MF. Cardiorespiratory fitness as predictor of cancer mortality: a systematic review and meta-analysis. Ann Oncol : Off J Eur Soc Med Oncol / ESMO. 2015;26(2):272–8. doi:10.1093/annonc/mdu250.

    Article  CAS  Google Scholar 

  8. West MA, Lythgoe D, Barben CP, Noble L, Kemp GJ, Jack S, et al. Cardiopulmonary exercise variables are associated with postoperative morbidity after major colonic surgery: a prospective blinded observational study. Br J Anaesth. 2014;112(4):665–71. doi:10.1093/bja/aet408.

    Article  CAS  PubMed  Google Scholar 

  9. West MA, Parry MG, Lythgoe D, Barben CP, Kemp GJ, Grocott MP, et al. Cardiopulmonary exercise testing for the prediction of morbidity risk after rectal cancer surgery. Br J Surg. 2014;101(9):1166–72. doi:10.1002/bjs.9551.

    Article  CAS  PubMed  Google Scholar 

  10. West MA, Loughney L, Barben CP, Sripadam R, Kemp GJ, Grocott MP, et al. The effects of neoadjuvant chemoradiotherapy on physical fitness and morbidity in rectal cancer surgery patients. Eur J Surg Oncol : J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2014;40(11):1421–8. doi:10.1016/j.ejso.2014.03.021.

    Article  CAS  Google Scholar 

  11. West MA, Loughney L, Lythgoe D, Barben CP, Adams VL, Bimson WE, et al. The effect of neoadjuvant chemoradiotherapy on whole-body physical fitness and skeletal muscle mitochondrial oxidative phosphorylation in vivo in locally advanced rectal cancer patients—an observational pilot study. PLoS One. 2014;9(12), e111526. doi:10.1371/journal.pone.0111526.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fearon K, Arends J, Baracos V. Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol. 2013;10(2):90–9. doi:10.1038/nrclinonc.2012.209.

    Article  CAS  PubMed  Google Scholar 

  13. Aoyagi T, Terracina KP, Raza A, Matsubara H, Takabe K. Cancer cachexia, mechanism and treatment. World J Gastrointest Oncol. 2015;7(4):17–29. doi:10.4251/wjgo.v7.i4.17.

    PubMed  PubMed Central  Google Scholar 

  14. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95. doi:10.1016/S1470-2045(10)70218-7.

    Article  PubMed  Google Scholar 

  15. Thoresen L, Frykholm G, Lydersen S, Ulveland H, Baracos V, Prado CMM, et al. Nutritional status, cachexia and survival in patients with advanced colorectal carcinoma. Different assessment criteria for nutritional status provide unequal results. Clin Nutr. 2013;32(1):65–72. doi:10.1016/j.clnu.2012.05.009.

    Article  CAS  PubMed  Google Scholar 

  16. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9(7):629–35. doi:10.1016/s1470-2045(08)70153-0.

    Article  PubMed  Google Scholar 

  17. Alves CR, da Cunha TF, da Paixao NA, Brum PC. Aerobic exercise training as therapy for cardiac and cancer cachexia. Life Sci. 2015;125:9–14. doi:10.1016/j.lfs.2014.11.029.

    Article  CAS  PubMed  Google Scholar 

  18. Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2013. doi:10.1136/bjsports-2013-092576.

    PubMed  Google Scholar 

  19. Sellar CM, Bell GJ, Haennel RG, Au HJ, Chua N, Courneya KS. Feasibility and efficacy of a 12-week supervised exercise intervention for colorectal cancer survivors. Appl Physiol Nutr Meta. 2014;39(6):715–23. doi:10.1139/apnm-2013-0367.

    Article  Google Scholar 

  20. Hawkes AL, Chambers SK, Pakenham KI, Patrao TA, Baade PD, Lynch BM, et al. Effects of a telephone-delivered multiple health behavior change intervention (CanChange) on health and behavioral outcomes in survivors of colorectal cancer: a randomized controlled trial. J Clin Oncol : Off J Am Soc Clin Oncol. 2013;31(18):2313–21. doi:10.1200/jco.2012.45.5873.

    Article  Google Scholar 

  21. Lynch BM, Baade P, Fritschi L, Leggett B, Owen N, Pakenham K, et al. Modes of presentation and pathways to diagnosis of colorectal cancer in Queensland. Med J Aust. 2007;186(6):288–91.

    PubMed  Google Scholar 

  22. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. Philadelphia: Lippincott Williams & Wilkins; 2014.

    Google Scholar 

  23. Wasserman K, Hansen J, Sue D, Casaburi R, Whipp B. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  24. Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81. doi:10.1249/00005768-198205000-00012.

    Article  CAS  PubMed  Google Scholar 

  25. Godin G, Shephard RJ. A simple method to assess exercise behavior in the community. Can J Appl Sport Sci J Can Sci Appl Sport. 1985;10(3):141–6.

    CAS  Google Scholar 

  26. Miller DJ. Comparison of activity levels using the Caltrac accelerometer and five questionnaires. Med Sci Sports Exerc. 1994;26(3):376–82.

    Article  CAS  PubMed  Google Scholar 

  27. Rauh M, Hovell MF, Hofstetter CR, Sallis JF, Gleghorn A. Reliability and validity of self-reported physical activity in Latinos. Int J Epidemiol. 1992;21(5):966–71. doi:10.1093/ije/21.5.966.

    Article  CAS  PubMed  Google Scholar 

  28. Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvao DA, Pinto BM, et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):1409–26. doi:10.1249/MSS.0b013e3181e0c112.

    Article  PubMed  Google Scholar 

  29. Buffart LM, Galvao DA, Brug J, Chinapaw MJ, Newton RU. Evidence-based physical activity guidelines for cancer survivors: current guidelines, knowledge gaps and future research directions. Cancer Treat Rev. 2014;40(2):327–40. doi:10.1016/j.ctrv.2013.06.007.

    Article  CAS  PubMed  Google Scholar 

  30. Courneya KS, Friedenreich CM, Quinney HA, Fields ALA, Jones LW, Fairey AS. A randomized trial of exercise and quality of life in colorectal cancer survivors. Eur J Cancer Care. 2003;12(4):347–57. doi:10.1046/j.1365-2354.2003.00437.x.

    Article  CAS  Google Scholar 

  31. Pinto BM, Papandonatos GD, Goldstein MG, Marcus BH, Farrell N. Home-based physical activity intervention for colorectal cancer survivors. Psycho-Oncology. 2013;22(1):54–64. doi:10.1002/pon.2047.

    Article  PubMed  Google Scholar 

  32. Cramer H, Lauche R, Klose P, Dobos G, Langhorst J. A systematic review and meta-analysis of exercise interventions for colorectal cancer patients. Eur J Cancer Care (Engl). 2014;23(1):3–14. doi:10.1111/ecc.12093.

    Article  CAS  Google Scholar 

  33. Halliwill JR, Sieck DC, Romero SA, Buck TM, Ely MR. Blood pressure regulation X: what happens when the muscle pump is lost? Post-exercise hypotension and syncope. Eur J Appl Physiol. 2014;114(3):561–78. doi:10.1007/s00421-013-2761-1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brito Ade F, de Oliveira CV, Santos Mdo S, Santos AC. High-intensity exercise promotes postexercise hypotension greater than moderate intensity in elderly hypertensive individuals. Clin Physiol Funct Imaging. 2014;34(2):126–32. doi:10.1111/cpf.12074.

    Article  PubMed  Google Scholar 

  35. Jordan J, Shannon JR, Black BK, Ali Y, Farley M, Costa F, et al. The pressor response to water drinking in humans: a sympathetic reflex? Circulation. 2000;101(5):504–9.

    Article  CAS  PubMed  Google Scholar 

  36. Endo MY, Kajimoto C, Yamada M, Miura A, Hayashi N, Koga S, et al. Acute effect of oral water intake during exercise on post-exercise hypotension. Eur J Clin Nutr. 2012;66(11):1208–13. doi:10.1038/ejcn.2012.139.

    Article  CAS  PubMed  Google Scholar 

  37. de Oliveira EP, Burini RC, Jeukendrup A. Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sports Med. 2014;44 Suppl 1:79–85. doi:10.1007/s40279-014-0153-2.

    Article  PubMed Central  Google Scholar 

  38. Bourke L, Thompson G, Gibson DJ, Daley A, Crank H, Adam I, et al. Pragmatic lifestyle intervention in patients recovering from colon cancer: a randomized controlled pilot study. Arch Phys Med Rehabil. 2011;92(5):749–55. doi:10.1016/j.apmr.2010.12.020.

    Article  PubMed  Google Scholar 

  39. Jones LW, Liang Y, Pituskin EN, Battaglini CL, Scott JM, Hornsby WE, et al. Effect of exercise training on peak oxygen consumption in patients with cancer: a meta-analysis. Oncologist. 2011;16(1):112–20. doi:10.1634/theoncologist.2010-0197.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Allgayer H, Nicolaus S, Schreiber S. Decreased interleukin-1 receptor antagonist response following moderate exercise in patients with colorectal carcinoma after primary treatment. Cancer Detect Prev. 2004;28(3):208–13. doi:10.1016/j.cdp.2004.02.001.

    Article  CAS  PubMed  Google Scholar 

  41. Allgayer H, Owen RW, Nair J, Spiegelhalder B, Streit J, Reichel C, et al. Short-term moderate exercise programs reduce oxidative DNA damage as determined by high-performance liquid chromatography-electrospray ionization-mass spectrometry in patients with colorectal carcinoma following primary treatment. Scand J Gastroenterol. 2008;43(8):971–8. doi:10.1080/00365520701766111.

    Article  CAS  PubMed  Google Scholar 

  42. Lee DH, Kim JY, Lee MK, Lee C, Min JH, Jeong DH, et al. Effects of a 12-week home-based exercise program on the level of physical activity, insulin, and cytokines in colorectal cancer survivors: a pilot study. Support Care Cancer. 2013;21(9):2537–45. doi:10.1007/s00520-013-1822-7.

    Article  PubMed  Google Scholar 

  43. Strasser B, Steindorf K, Wiskemann J, Ulrich CM. Impact of resistance training in cancer survivors: a meta-analysis. Med Sci Sports Exerc. 2013;45(11):2080–90. doi:10.1249/MSS.0b013e31829a3b63.

    Article  PubMed  Google Scholar 

  44. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part I: cardiopulmonary emphasis. Sports Med (Auckland, NZ). 2013;43(5):313–38. doi:10.1007/s40279-013-0029-x.

    Article  Google Scholar 

  45. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med (Auckland, NZ). 2013;43(10):927–54. doi:10.1007/s40279-013-0066-5.

    Article  Google Scholar 

  46. Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med (Auckland, NZ). 2002;32(1):53–73.

    Article  Google Scholar 

  47. Laursen PB, Blanchard MA, Jenkins DG. Acute high-intensity interval training improves Tvent and peak power output in highly trained males. Can J Appl Physiol. 2002;27(4):336–48.

    Article  PubMed  Google Scholar 

  48. MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol (Bethesda, Md : 1985). 1998;84(6):2138–42.

    CAS  Google Scholar 

  49. Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077–84. doi:10.1113/jphysiol.2011.224725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1303–10. doi:10.1152/ajpregu.00538.2010.

    Article  CAS  PubMed  Google Scholar 

  51. Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J Appl Physiol (Bethesda, Md : 1985). 2009;106(3):929–34. doi:10.1152/japplphysiol.90880.2008.

    Article  CAS  Google Scholar 

  52. Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol. 2010;588(6):1011–22. doi:10.1113/jphysiol.2009.181743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wisløff U, Støylen A, Loennechen JP, Bruvold M, Rognmo Ø, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94. doi:10.1161/circulationaha.106.675041.

    Article  PubMed  Google Scholar 

  54. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res / Natl Strength Cond Assoc. 2010;24(10):2857–72. doi:10.1519/JSC.0b013e3181e840f3.

    Article  Google Scholar 

  55. Schoenfeld BJ. Postexercise hypertrophic adaptations: a reexamination of the hormone hypothesis and its applicability to resistance training program design. J Strength Cond Res / Natl Strength Cond Assoc. 2013;27(6):1720–30. doi:10.1519/JSC.0b013e31828ddd53.

    Article  Google Scholar 

  56. Boutcher SH. High-intensity intermittent exercise and fat loss. J Obes. 2011;2011:868305. doi:10.1155/2011/868305.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jacobs RA, Fluck D, Bonne TC, Burgi S, Christensen PM, Toigo M, et al. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol (Bethesda, Md : 1985). 2013;115(6):785–93. doi:10.1152/japplphysiol.00445.2013.

    Article  Google Scholar 

  58. Tjønna AE, Lee SJ, Rognmo Ø, Stølen T, Bye A, Haram PM, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118(4):346–54. doi:10.1161/CIRCULATIONAHA.108.772822.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Boyle T, Lynch BM, Courneya KS, Vallance JK. Agreement between accelerometer-assessed and self-reported physical activity and sedentary time in colon cancer survivors. Support Care Cancer : Off J Multinatl Assoc Support Care Cancer. 2015;23(4):1121–6. doi:10.1007/s00520-014-2453-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Devin.

Ethics declarations

Funding

This study was funded by Queensland Health (Remserv) (project number 2013001802).

Jenkins D, Skinner T, Bolam K, Chambers S, Owens J and Gatford J. (2013–2014). What exercise is the most effective in improving the health of colorectal cancer survivors? Queensland Health (Remserv), AU$19,000

Conflict of interest

The authors declare that they have no competing interests.

Statement of human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Human Ethics Committee of the University of Queensland and with the 1964 Helsinki declaration and its later amendments.

Informed consent

Written and informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devin, J.L., Sax, A.T., Hughes, G.I. et al. The influence of high-intensity compared with moderate-intensity exercise training on cardiorespiratory fitness and body composition in colorectal cancer survivors: a randomised controlled trial. J Cancer Surviv 10, 467–479 (2016). https://doi.org/10.1007/s11764-015-0490-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11764-015-0490-7

Keywords

Navigation