Web Service management system for bioinformatics research: a case study

  • Kai Xu
  • Qi Yu
  • Qing Liu
  • Ji Zhang
  • Athman Bouguettaya
Original Research Paper

Abstract

In this paper, we present a case study of the design and development of a Web Service management system for bioinformatics research. The described system is a prototype that provides a complete solution to manage the entire life cycle of Web Services in bioinformatics domain, which include semantic service description, service discovery, service selection, service composition, service execution, and service result presentation. A challenging issue we encountered is to provide the system capability to assist users to select the “right” service based on not only functionality but also properties such as reliability, performance, and analysis quality. As a solution, we used both bioinformatics and service ontology to provide these two types of service descriptions. A service selection algorithm based on skyline query algorithm is proposed to provide users with a short list of candidates of the “best” service. The evaluation results demonstrate the efficiency and scalability of the service selection algorithm. Finally, the important lessons we learned are summarized, and remaining challenging issues are discussed as possible future research directions.

Keywords

Web Service Bioinformatics Ontology Workflow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235): 467–470CrossRefGoogle Scholar
  2. 2.
    Galperin MY (2007) The molecular biology database collection: 2008 update Nucleic Acids ResearchGoogle Scholar
  3. 3.
    Brazas MD, Fox JA, Brow T, McMillan S, Ouellette BFF (2008) Keeping pace with the data 2008 update on the bioinformatics links directory. Nucl Acids Res 36(Suppl 2): W2–W4CrossRefGoogle Scholar
  4. 4.
    Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver T, Glover K, Pocock M, Wipat A, Li P (2004) Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20(17): 3045–3054CrossRefGoogle Scholar
  5. 5.
    Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Kepler SM (2004) An extensible system for design and execution of scientific workflows. In: Proceedings of the 16th international conference on scientific and statistical database management. IEEE Computer Society, Washington, p 423Google Scholar
  6. 6.
    Majithia S, Shields MS, Taylor IJ, Wang I (2004) Triana: a graphical web service composition and execution toolkit In: Proceedings of the IEEE international conference on web services, IEEE Computer Society, pp 514–524Google Scholar
  7. 7.
    Bizer C, Heath T, Berners-Lee T (2009) Linked data—the story so far. Int J Semant Web Inf Syst 5: 1–22Google Scholar
  8. 8.
    Lord PW, Alper P, Wroe C, Goble CA (2005) A light-weight architecture for user oriented semantic service discovery. In:Proceedings of the second European semantic web conference, pp 17–31Google Scholar
  9. 9.
    2010 Getting started with the Kepler Tagging Module Last accessed on 14 October. http://code.kepler-project.org/code/kepler/releases/release-branches/tagging-2.1/docs/tagging.pdf
  10. 10.
    Wolstencroft K, Alper P, Hull D, Wroe C, Lord P, Stevens R, Goble C (2007) The mygrid ontology bioinformatics service discovery. Int J Bioinform Res Appl 3(3): 303–325CrossRefGoogle Scholar
  11. 11.
    Wilkinson MD, Links M (2002) BioMOBY: an open source biological web services proposal. Br Bioinform 3(4): 331–341CrossRefGoogle Scholar
  12. 12.
    Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, Roos M, Wolstencroft K, Aleksejevs S, Stevens R, Pettifer S, Lopez R, Goble CA (2010) Biocatalogue: a universal catalogue of web services for the life sciences. Nucl Acids Res 38(2): W689–694CrossRefGoogle Scholar
  13. 13.
    Roman D, Keller U, Lausen H, de Bruijn J, Lara R, Stollberg M, Polleres A, Feier C, Bussler C, Fensel D (2005) Web service modeling ontology. Appl Ontol 1(1): 77–106Google Scholar
  14. 14.
    Romano P, Marra D, Milanesi L (2005) Web services and workflow management for biological resources. BMC Bioinform 6(4): S24CrossRefGoogle Scholar
  15. 15.
    Taylor IJ, Deelman E, Gannon DB (2006) Workflows for e-Science scientific workflows for grids. Springer, New YorkGoogle Scholar
  16. 16.
    Schiltz G, Gessler D, Stein L (2004) Semantic moby. In: W3C workshop on semantic web for life sciencesGoogle Scholar
  17. 17.
    Fielding RT (2000) Architectural styles and the design of network-based software architectures. PhD thesis Chair-Richard N TaylorGoogle Scholar
  18. 18.
    Stevens RD, Robinson AJ, Goble CA (2003) myGrid: personalised bioinformatics on the information grid. Bioinformatics 19: 302–304CrossRefGoogle Scholar
  19. 19.
    Berkley C, Bowers S, Jones M, Ludäscher B, Schildhauer M, Tao J (2005) Incorporating semantics in scientific workflow authoring. In: SSDBM’2005: Proceedings of the 17th international conference on scientific and statistical database management. US Lawrence Berkeley Laboratory, Berkeley, pp 75–78Google Scholar
  20. 20.
    Bowers S, Ludascher B (2004) An ontology-driven framework for data transformation in scientific workflows. In: Proceedings of the first international workshop on data integration in the life sciences, pp 1–16Google Scholar
  21. 21.
    Bowers S, Thau D, Williams R, Bertram L (2004) Data procurement for enabling scientific workflows On exploring inter-ant parasitism. In: Proceedings of the second international workshop on semantic web and databases, pp 57–63Google Scholar
  22. 22.
    Wang Y, Vassileva J (2007) A review on trust and reputation for web service selection. In: Proceedings of 27th international conference on distributed computing systems workshops, p 25Google Scholar
  23. 23.
    Yu HQ, Reiff-Marganiec S (2008) Non-functional property based service selection: a survey and classification of approaches. In: Proceedings of the 2nd workshop on non functional properties and service level agreements in service oriented computingGoogle Scholar
  24. 24.
    Srivastava U, Widom J, Munagala K, Motwani R (2006) Query Optimization over Web Services. In: VLDBGoogle Scholar
  25. 25.
    Canfora G, Di Penta M, Esposito R, Villani ML (2005) An approach for qos-aware service composition based on genetic algorithms. In: GECCO 05: Proceedings of the 2005 conference on genetic and evolutionary computation. ACM, New York, pp 1069–1075Google Scholar
  26. 26.
    Ouzzani M, Bouguettaya B (2004) Efficient access to web services. IEEE Internet Comput 8(2): 34–44CrossRefGoogle Scholar
  27. 27.
    Yu Q, Bouguettaya A (2008) Framework for web service query algebra and optimization. ACM Trans Web 2(1): 1–35MATHCrossRefGoogle Scholar
  28. 28.
    Yu T, Zhang Y, Lin K-J (2007) Efficient algorithms for web services selection with end-to-end qos constraints. ACM Trans Web 1(1): 6CrossRefGoogle Scholar
  29. 29.
    Zeng L, Benatallah B, Ngu AHH, Dumas M, Kalagnanam J, Chang H (2004) Qos-aware middleware for web services composition. IEEE Trans Softw Eng 30(5): 311–327CrossRefGoogle Scholar
  30. 30.
    Skoutas D, Sacharidis D, Simitsis A, Sellis T (2010) Ranking and clustering web services using multicriteria dominance relationships. IEEE Trans Serv Comput 3: 163–177CrossRefGoogle Scholar
  31. 31.
    Yu Qi, Bouguettaya A (2010) Computing service skyline from uncertain qows. IEEE Trans Serv Comput 3(1): 16–29CrossRefGoogle Scholar
  32. 32.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1): 25–29CrossRefGoogle Scholar
  33. 33.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis. A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43): 15545–15550Google Scholar
  34. 34.
    Kanehisa M, Goto S (2000) Kegg kyoto encyclopedia of genes and genomes. Nucl Acids Res 28: 27–30CrossRefGoogle Scholar
  35. 35.
    Labarga A, Valentin F, Anderson M, Lopez R (2007) Web services at the European Bioinformatics Institute. Nucl Acids Res 35: 6–11CrossRefGoogle Scholar
  36. 36.
    Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FCP, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment MIAME toward standards for microarray data. Nat Genet 29(4): 365–371CrossRefGoogle Scholar
  37. 37.
    R Development Core Team R (2008) A Lang Environ Stat Comput. R Foundation for Statistical Computing. Vienna, Austria, ISBN 3-900051-07-0Google Scholar
  38. 38.
    Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J (2004) Bioconductor open software development for computational biology and bioinformatics. Genome Biol 5: R80CrossRefGoogle Scholar
  39. 39.
    Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ, Leontis N, Rocca-Serra P, Ruttenberg A, Sansone S-A, Scheuermann RH, Shah N, Whetzel PL, Lewis S (2007) The OBO Foundry coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25(11): 1251–1255CrossRefGoogle Scholar
  40. 40.
    Martin D, Burstein M, Hobbs J, Lassila O, McDermott D, McIlraith S, Narayanan S, Paolucci M, Parsia B, Payne T, Sirin E, Srinivasan N, Sycara K (2004) OWL-S:Semantic markup for web services. Technical report, http://www.w3.org/Submission/OWL-S/
  41. 41.
    Haller A, Cimpian E, Mocan A, Oren E, Bussler C (2005) WSMX–a semantic service-oriented architecture. In: Proceedings of the IEEE international conference on web services, pp 321–328Google Scholar
  42. 42.
    De Bruijn J, Holger L, Polleres A, Fensel D (2006) The web service modeling language WSML: an overview. In: Proceedings of the 3rd European semantic web conference, pp 590–604Google Scholar
  43. 43.
    Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2008) Genbank. Nucl Acids Res 36: D25–D30CrossRefGoogle Scholar
  44. 44.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410Google Scholar
  45. 45.
    Borzsonyi S, Kossmann D, Stocker K (2001) The skyline operator. In:ICDEGoogle Scholar
  46. 46.
    Kossmann D, Ramsak F, Rost S (2002) Shooting stars in the sky: an online algorithm for skyline queries. In:VLDBGoogle Scholar
  47. 47.
    Papadias D, Tao Y, Fu G, Seeger B (2003) An optimal and progressive algorithm for skyline queries. In: Proceedings of the 2003 ACM SIGMOD international conference on management of data, San Diego. ACM, New York, pp 467–478Google Scholar
  48. 48.
    Tan K-L, Eng P-K, Ooi BC (2001) Efficient progressive skyline computation. In: Proceedings of the 27th international conference on very large data bases. Morgan Kaufmann, San Francisco, pp 301–310Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Kai Xu
    • 1
    • 2
  • Qi Yu
    • 3
  • Qing Liu
    • 1
  • Ji Zhang
    • 1
    • 4
  • Athman Bouguettaya
    • 5
  1. 1.Tasmanian ICT Centre, CSIROHobartAustralia
  2. 2.Middlesex UniversityLondonUK
  3. 3.Rochester Institute of TechnologyRochesterUSA
  4. 4.University of Southern QueenslandToowoombaAustralia
  5. 5.ICT Centre, CSIROCanberraAustralia

Personalised recommendations