Service Oriented Computing and Applications

, Volume 4, Issue 4, pp 277–289 | Cite as

An offer generation approach to SLA negotiation support in service oriented computing

  • Azlan IsmailEmail author
  • Jun Yan
  • Jun Shen
Original Research Paper


Service level agreement (SLA) plays an important role in realizing service-oriented application. With SLA negotiation mechanism, both parties namely the requester and the provider can exchange information of SLA parameters towards establishing an agreement. In this paper, we study the roles of both parties and focus on how service providers generate offers upon receiving the requests from service requesters. From the provider’s perspective, the provider has to decide the right values to offer based on its current resource availability while aiming to satisfy the requester requirements (if possible). Therefore, in this paper, we propose an approach to addressing offer generation, including the architecture, the information modeling and the generation algorithm. We then provide a case study to illustrate the usefulness of the approach, followed by an analysis to justify the effectiveness of the approach.


Constraints checking Resource availability Service offer generation SLA negotiation Time slots Resource placement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bichler M, Setzer T (2007) Admission control for media on demand services. Serv Oriented Comput Appl 1(1): 65–73CrossRefGoogle Scholar
  2. 2.
    Blake MB, Cummings DJ (2007) Workflow composition of service level agreements. In: IEEE international Conference on services computing SCC 2007, pp 138–145Google Scholar
  3. 3.
    Bonatti PA, Festa P (2005) On optimal service selection. In: Proceedings of the 14th international conference on World Wide Web, pp 530–538Google Scholar
  4. 4.
    Carrera D, Steinder M, Whalley I, Torres J, Ayguade E (2008) Utility-based placement of dynamic Web applications with fairness goals. In: Proceedings of the IEEE Network operations and management symposium, NOMS 2008, pp 9–16Google Scholar
  5. 5.
    Comuzzi M, Pernici B (2005) An achitecture for flexible Web service QoS negotiation. In: Proceedings of the ninth IEEE international EDOC enterprise computing conference, EDOC 2005, pp 70–79Google Scholar
  6. 6.
    Comuzzi M, Pernici B (2009) A framework for QoS-based Web service contracting. ACM Trans Web 3(3): 1–52CrossRefGoogle Scholar
  7. 7.
    Czajkowski K, Foster I, Kesselman C, Sander V, Tuecke S (2002) SNAP: a protocol for negotiating service level agreements and coordinating resource management in distributed systems. Job Scheduling Strateg Parallel Process, pp 153–183Google Scholar
  8. 8.
    Czajkowski K, Foster I, Kesselman C (2005) Agreement-based resource management. Proc IEEE 93(3): 631–643CrossRefGoogle Scholar
  9. 9.
    Dan A, Davis D, Kearney R, Keller A, King R, Kuebler D, Ludwig H, Polan M, Spreitzer M, Youssef A (2004) Web services on demand: WSLA-Driven automated management. IBM Syst J 43(1): 136–158CrossRefGoogle Scholar
  10. 10.
    Elfatatry A, Layzell P (2004) Negotiating in service-oriented environments. Commun ACM 47(8): 103–108CrossRefGoogle Scholar
  11. 11.
    Elnikety S, Nahum E, Tracey J, Zwaenepoel W (2004) A method for transparent admission control and request scheduling in e-commerce web sites. In: Proceedings of the 13th international conference on World Wide Web, pp 276–286Google Scholar
  12. 12.
    Erlenkotter D (1978) A dual-based procedure for uncapacitated facility location. Oper Res 26(6): 992–1009zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Erradi A, Padmanabhuni S, Varadharajan N (2006) Differential QoS support in Web Services Management. In: International conference on Web services, ICWS 2006, pp 781–788Google Scholar
  14. 14.
    Faratin P, Sierra C, Jennings NR (1998) Negotiation decision functions for autonomous agents. Rob Auton Syst 24(3–4): 159–182CrossRefGoogle Scholar
  15. 15.
    FIPA (2000) Contract net interaction protocol specification. Technical report, foundation for intelligent physical agents.
  16. 16.
    Hanan M, Kurtzberg JM (1972) Placement techniques. In: Design automation of digital systems : theory and techniques 1:213– 282Google Scholar
  17. 17.
    Hanan M, Sr Wolff PK, Agule BJ (1976) Some experimental results on placement techniques. In: Proceedings of the 13th Design Automation Conference, pp 214–224Google Scholar
  18. 18.
    Hudert S, Ludwig H, Wirtz G (2009) Negotiating SLAs-An approach for a generic negotiation framework for WS-Agreement. J Grid Comput 7(2): 225–246CrossRefGoogle Scholar
  19. 19.
    Hung PCK, Li H, Jeng J-J (2004) WS-Negotiation: an overview of research issues. In: Proceedings of the 37th annual Hawaii international conference on system sciences 2004, pp 1–10Google Scholar
  20. 20.
    Ismail A, Yan J, Shen J (2009) Dynamic service selection for service composition with time constraints. In: Australian software engineering conference, ASWEC 2009, pp 183–190Google Scholar
  21. 21.
    Ismail A, Yan J, Shen J (2009) Verification of composite services with temporal consistency checking and temporal satisfaction estimation. In: Web information systems engineering, WISE 2009, pp 343–350Google Scholar
  22. 22.
    Ismail A, Yan J, Shen J (2009) Towards dynamic formation of temporal constraints for the service level agreements negotiation. In: IEEE international conference on service-oriented computing and applications (SOCA), pp 1–8Google Scholar
  23. 23.
    Jaeger MC, Rojec-Goldmann G, Muhl G (2004) QoS aggregation for Web service composition using workflow patterns. In: Proceedings of the eighth IEEE international enterprise distributed object computing conference, EDOC 2004, pp 149–159Google Scholar
  24. 24.
    Jennings NR, Faratin P, Lomuscio AR, Parsons S, Wooldridge MJ, Sierra C (2001) Automated negotiation: prospects, methods and challenges. Group Decis Negotiation 10(2): 199–215CrossRefGoogle Scholar
  25. 25.
    Karve A, Kimbrel T, Pacifici G, Spreitzer M, Steinder M, Sviridenko M, Tantawi A (2006) Dynamic placement for clustered Web applications. In: Proceedings of the 15th international conference on World Wide Web, WWW 2006, pp 595–604Google Scholar
  26. 26.
    Keller A, Ludwig H (2003) The WSLA framework: specifying and monitoring service level agreements for Web services. J Network Syst Manage 11(1): 57–81CrossRefGoogle Scholar
  27. 27.
    Liu D, Deters R (2008) Management of service-oriented systems. Serv Oriented Comput Appl 2(2): 51–64zbMATHCrossRefGoogle Scholar
  28. 28.
    Lomuscio AR, Wooldridge M, Jennings NR (2003) A classification scheme for negotiation in electronic commerce. Group Decis Negotiation 12(1): 31–56CrossRefGoogle Scholar
  29. 29.
    Ludwig A, Franczyk B (2008) COSMA an approach for managing SLAs in composite services. In: Service-oriented computing, ICSOC 2008, pp 626–632Google Scholar
  30. 30.
    Ludwig A, Kowalkiewicz M (2009) Supporting service level agreement creation with past service behavior data. In: Business information systems workshops, BIS 2009, pp 375–385Google Scholar
  31. 31.
    Ludwig H, Gimpel H, Dan A, Kearney B (2005) Template-based automated service provisioning supporting the agreement-driven service life-cycle. In: Service-oriented computing, ICSOC 2005, pp 283–295Google Scholar
  32. 32.
    Luo JZ, Zhou JY, Wu ZA (2009) An adaptive algorithm for QoS-aware service composition in grid environments. Serv Oriented Comput Appl 3(3): 217–226CrossRefGoogle Scholar
  33. 33.
    Menasce DA (2004) Composing Web services: a QoS view. IEEE Internet Comput 8(6): 88–90CrossRefGoogle Scholar
  34. 34.
    Muller C, Martin-Diaz O, Ruiz-Cortes A, Resinas M, Fernandez P (2008) Improving temporal-awareness of WS-agreement. In: Service-oriented computing, ICSOC 2007, pp 193–206Google Scholar
  35. 35.
  36. 36.
    OASIS: Web services Business Process Execution Language Version 2.0. (2007).
  37. 37.
    OGF: Web Services agreement specification (2007).
  38. 38.
    Pacifici G, Spreitzer M, Tantawi AN, Youssef A (2005) Performance management for cluster-based web services. IEEE J Sel Areas Commun 23(12): 2333–2343CrossRefGoogle Scholar
  39. 39.
    Papazoglou MP, Traverso P, Dustdar S, Leymann F (2007) Service-oriented computing: state of the art and research challenges. Computer 40(11): 38–45CrossRefGoogle Scholar
  40. 40.
    Parkin M, Kuo D, Brooke J (2006) A framework & negotiation protocol for service contracts. In: Proceedings of the IEEE international conference on services computing, SCC 2006, pp 253–256Google Scholar
  41. 41.
    Pichot A, Wieder P, Waldrich O, Ziegler W (2007) Dynamic SLA-Negotiation based on WS-Agreement. Technical report, CoreGRID.
  42. 42.
    Qiu L, Padmanabhan VN, Voelker GM (2001) On the placement of Web Server replicas. IEEE INFOCOM 3: 1587–1596Google Scholar
  43. 43.
    Tang C, Steinder M, Spreitzer M, Pacifici G (2007) A scalable application placement controller for enterprise data centers. In: Proceedings of the 16th international conference on World Wide Web, pp 331–340Google Scholar
  44. 44.
    Tosic V, Patel K, Pagurek B (2002) WSOL Web Service Offerings Language. In: Web Services, E-Business, and the Semantic Web, pp 57–67Google Scholar
  45. 45.
    Yan J, Kowalczyk R, Lin J, Chhetri MB, Goh SK, Zhang J (2007) Autonomous service level agreement negotiation for service composition provision. Future Generation Comput Syst 23(6): 748–759CrossRefGoogle Scholar
  46. 46.
    Yu L, Magoules F (2009) Service sheduling and rescheduling in an applications integration framework. Adv Eng Softw 40(9): 941–946zbMATHCrossRefGoogle Scholar
  47. 47.
    Yu T, Lin KJ (2005) Service selection algorithms for composing complex services with multiple QoS constraints. In: Service-oriented computing, ICSOC 2005, pp 130–143Google Scholar
  48. 48.
    W3C: Web Services Policy 1.2—Framework (2006).
  49. 49.
    W3C: SOAP version 1.2 (2007).
  50. 50.
    W3C: Web Services Description Language (WSDL) version 2.0 Part 0: Primer (2007).
  51. 51.
    Zeng L, Benatallah B, Ngu AHH, Dumas M, Kalagnanam J, Chang H (2004) Qos-aware middleware for Web services composition. IEEE Trans Softw Eng 30(5): 311–327CrossRefGoogle Scholar
  52. 52.
    Zulkernine F, Martin P, Craddock C, Wilson K (2009) A policy-based middleware for Web services SLA negotiation. In: Proceedings of the IEEE international conference on Web services, ICWS 2009, pp 1043–1050Google Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.School of Information Systems and TechnologyUniversity of WollongongWollongongAustralia
  2. 2.Faculty of Computer and Mathematical SciencesUniversiti Teknologi MARA (UiTM)SelangorMalaysia

Personalised recommendations