Service Oriented Computing and Applications

, Volume 4, Issue 4, pp 261–275 | Cite as

An automated approach to Semantic Web Services Mediation

  • Stefan Dietze
  • Alessio Gugliotta
  • John Domingue
  • Hong Qing Yu
  • Michael Mrissa
Original Research Paper


Semantic Web Services (SWS) aim at the automated discovery, selection and orchestration of Web services on the basis of comprehensive, machine-interpretable semantic descriptions. However, heterogeneities between distinct SWS representations pose strong limitations w.r.t. interoperability and reusability. Hence, semantic-level mediation, i.e. mediation between concurrent semantic representations of services, is a key requirement to allow SWS matchmaking algorithms to compare capabilities of distinct SWS. Semantic-level mediation requires to identify similarities across distinct SWS representations. Since current approaches rely either on manual one-to-one mappings or on semi-automatic mappings based on the exploitation of linguistic or structural similarities, these are perceived to be costly and error-prone. We propose a mediation approach enabling the implicit representation of similarities across distinct SWS by grounding these in so-called Mediation Spaces (MS). Given a set of SWS and their respective MS grounding, a general-purpose mediator automatically computes similarities to identify the most appropriate SWS for a given request. A prototypical application illustrates our approach.


Web services Service discovery Semantic semantic mediation Conceptual spaces Integration Interoperability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bicer V, Kilic O, Dogac A, Laleci GB (2005) Archetype-based semantic interoperability of web service messages in the health care domain. Int J Semantic Web Inform Syst 1(4): 1–23Google Scholar
  2. 2.
    Bizer C, Heath T, Berners-Lee T (2009) Linked data—the story so far. Special issue on linked data. Int J Semantic Web Inform Syst (IJSWIS)Google Scholar
  3. 3.
    Bowers S, Ludäscher B (2004) An ontology-driven framework for data transformation in scientific workflows. In: Rahm E (ed) DILS, volume 2994 of lecture notes in computer science. Springer, Berlin, pp 1–16Google Scholar
  4. 4.
    Cabral L, Domingue J, Galizia S, Gugliotta A, Norton B, Tanasescu V, Pedrinaci C (2006) IRS-III: a broker for semantic web services based applications. In: Proceedings of the 5th international semantic web conference, Athens, USAGoogle Scholar
  5. 5.
    Choi N, Song I, Han H (2006) A survey on ontology mapping. SIGMOD Rec 35(3): 34–41CrossRefGoogle Scholar
  6. 6.
    Cimpian E, Mocan A, Stollberg M (2006) Mediation Enabled Semantic Web services usage. In: Proceedings of the 1st Asian semantic web conference (ASWC 2006), September 6, 2006, Beijing, China, Springer, BerlinGoogle Scholar
  7. 7.
    Cregan A (2007) Symbol grounding for the semantic web. In: 4th European semantic web conference 2007, Innsbruck, AustriaGoogle Scholar
  8. 8.
    Dietze S, Gugliotta A, Domingue J (2008) Bridging the gap between mobile application contexts and semantic web resources. In: Stojanovic D (ed) Context-aware mobile and ubiquitous computing for enhanced usability: adaptive technologies and applications, Information Science Publishing (IGI Global)Google Scholar
  9. 9.
    Dietze S, Gugliotta A, Domingue J (2008) Conceptual Situation Spaces for situation-driven processes. In: 5th European semantic web conference, Tenerife, SpainGoogle Scholar
  10. 10.
    Dietze S, Benn N, Yu H, Pedrinaci C, Makni B, Liu D, Lambert D, Domingue J (2010) Comprehensive service semantics and light-weight linked services: towards an integrated approach, Workshop: Fourth international workshop SMR2 2010 on service matchmaking and resource retrieval in the semantic web at 9th international semantic web conference (ISWC), Shanghai, ChinaGoogle Scholar
  11. 11.
    Ehrig M, Sure Y (2004) Ontology mapping—an integrated approach, In: Proceedings of ESWSGoogle Scholar
  12. 12.
    Fensel D, Lausen H, Polleres A, de Bruijn J, Stollberg M, Roman D, Domingue J (2006) Enabling semantic web services—the web service modelling ontology. Springer, BerlinGoogle Scholar
  13. 13.
    Gärdenfors P (2000) Conceptual spaces—the geometry of thought. MIT Press, CambridgeGoogle Scholar
  14. 14.
    Gärdenfors P (2004) How to make the semantic web more semantic. In: Vieu AC, Varzi L (eds) Formal ontology in information systems. IOS Press, pp 19–36Google Scholar
  15. 15.
    Giunchiglia F, Shvaiko P, Yatskevich M (2004) S-Match: an algorithm and an implementation of semantic matching. ESWS 2004, pp 61–75Google Scholar
  16. 16.
    Harnad S (1999) The symbol grounding problem CoRR cs.AI/9906002Google Scholar
  17. 17.
    Joint US/EU ad hoc Agent Markup Language Committee (2004) OWL-S 1.1 Release.
  18. 18.
    Krause EF (1987) Taxicab geometry. DoverGoogle Scholar
  19. 19.
    Maedche A, Staab S (2002) Measuring similarity between ontologies, knowledge engineering and knowledge management: ontologies and the semantic web, LNCS Vol. 2473, Springer, Berlin, pp 15–21Google Scholar
  20. 20.
    Mitra P, Noy FN, Jaiswals A (2005) OMEN: a probabilistic ontology mapping tool, international semantic web conference 2005Google Scholar
  21. 21.
    Motta E (1998) An overview of the OCML modelling language, the 8th workshop on methods and languagesGoogle Scholar
  22. 22.
    Mrissa M, Ghedira C, Benslimane D, Maamar Z, Rosenberg F, Dustdar S (2007) A context-based mediation approach to compose semantic web services. ACM Trans Internet Techn 8(1)Google Scholar
  23. 23.
    Noy NF, Musen MA (2003) The PROMPT suite: interactive tools for ontology merging and mapping. Int J Human-Comput Stud 59: 983–1024CrossRefGoogle Scholar
  24. 24.
    Object Management Group: Business Process Modelling Notation Specification (
  25. 25.
    Qu Y, Hu W, Cheng G (2006) Constructing virtual documents for ontology matching, WWW 2006, May 23–26, 2006, Edinburgh, Scotland. ACM 1595933239/06/0005Google Scholar
  26. 26.
    Paolucci M, Srinivasan N, Sycara K (2004) Expressing WSMO Mediators in OWL-S. In: Proceedings of semantic web services: in 3rd international semantic web conference (ISWC 2004)Google Scholar
  27. 27.
    Pease A, Niles I, Li J (2002) The suggested upper merged ontology: A large ontology for the semanticweb and its applications. In: AAAI-2002 workshop on ontologies and the semantic web. Working NotesGoogle Scholar
  28. 28.
    Raubal M (2004) Formalizing Conceptual spaces. In: Varzi A, Vieu L (eds) Formal ontology in information systems. In: Proceedings of the third international conference (FOIS 2004). Frontiers in artificial intelligence and Applications 114, IOS Press, Amsterdam, pp 153–164Google Scholar
  29. 29.
    Schmidt A, Winterhalter C (2004) User context aware delivery of e-Learning material: approach and architecture. J Universal Comput Sci (JUCS) 10(1)Google Scholar
  30. 30.
    Schwering A (2005) Hybrid model for semantic similarity measurement. In: Meersman R, Tari Z (eds) CoopIS/DOA/ODBASE 2005, LNCS 3761, pp 1449–1465Google Scholar
  31. 31.
    Spencer B, Liu S (2004) Inferring data transformation rules to integrate semantic web services. In: McIlraith SA, Plexousakis D, van Harmelen F (eds) Int’l semantic web conference, vol 3298 of lecture notes in computer science, Springer, Berlin, pp 456–470Google Scholar
  32. 32.
    Suppes P, Krantz DM et al (1989) Foundations of measurement—geometrical, threshold, and probabilistic representations. Academic Press Inc., San DiegoGoogle Scholar
  33. 33.
    Vitvar T, Kopecký J, Viskova J, Fensel D (2008) WSMO-Lite annotations for web services. ESWC 674–689Google Scholar
  34. 34.
    WSMO Working Group, D2v1.0: Web service Modeling Ontology (WSMO). WSMO Working Draft (2004). (
  35. 35.
    Wu Z, Ranabahu A, Gomadam K, Sheth AP, Miller JA (2007) Automatic composition of semantic web services using process mediation. In: Proceedings of the 9th international conference on enterprise information systems (ICEIS’07), Funchal, Portugal, pp 453–461Google Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Stefan Dietze
    • 1
  • Alessio Gugliotta
    • 2
  • John Domingue
    • 1
  • Hong Qing Yu
    • 1
  • Michael Mrissa
    • 3
  1. 1.Knowledge Media InstituteThe Open UniversityMilton KeynesUK
  2. 2.Innova SpaRomaItaly
  3. 3.Université de Lyon, CNRS, Université Lyon 1, LIRIS UMR5205LyonFrance

Personalised recommendations