Advertisement

Log-based mining techniques applied to Web service composition reengineering

  • Walid GaaloulEmail author
  • Karim Baïna
  • Claude Godart
Special Issue Paper

Abstract

Web service compositions are becoming more and more complex, involving numerous interacting ad-hoc services. These services are often implemented as business processes themselves. By analysing such complex web service compositions one is able to better understand, control and eventually re-design them. Our contribution to this problem is a mining algorithm, based on a statistical technique to discover composite web service patterns from execution logs. Our approach is characterised by a “local” pattern’s discovery that covers partial results through a dynamic programming algorithm. Those locally discovered patterns are then composed iteratively until the composite Web service is discovered. The analysis of the disparities between the discovered model and the initial ad-hoc composite model (delta-analysis) enables initial design gaps to be detected and thus to re-engineer the initial Web service composition.

Keywords

Composite service mining Service intelligence Service analysis Service validation Service reengineering frameworks Model driven reengineering Workflow patterns 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gombotz R, Baïna K, Dustdar S (2005) Towards web services interaction mining architecture for e-commerce applications analysis. In: International conference on e-business and e-learning (EBEL’05), Amman, JordanGoogle Scholar
  2. 2.
    Fauvet MC, Dumas M, Benatallah B (2002) Collecting and querying distributed traces of composite service executions. In: On the move to meaningful Internet systems, 2002—DOA/CoopIS/ODBASE 2002 Confederated international conferences DOA, CoopIS and ODBASE 2002, Springer, Heidelberg, pp 373–390Google Scholar
  3. 3.
    Rouached M, Gaaloul W, van der Aalst WMP, Bhiri S, Godart C (2006) Web service mining and verification of properties: an approach based on event calculus. In: Meersman R, Tari Z (eds) OTM conferences (1). Lecture Notes in Computer Science, vol 4275. Springer, Heidelberg, pp 408–425Google Scholar
  4. 4.
    Punin J, Krishnamoorthy M, Zaki M (2001) Web usage mining: Languages and algorithms. In: Studies in classification, data analysis, and knowledge organization. Springer, HeidelbergGoogle Scholar
  5. 5.
    Baglioni M, Ferrara U, Romei A, Ruggieri S, Turini F (2002) Use soap-based intermediaries to build chains of web service functionalityGoogle Scholar
  6. 6.
    van der Aalst WMP, Weijters T, Maruster L (2004) Workflow mining: discovering process models from event logs. IEEE Trans Knowl Data Eng 16(9): 1128–1142CrossRefGoogle Scholar
  7. 7.
    Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns, elements of reusable object-oriented software. Addison-Wesley, MAGoogle Scholar
  8. 8.
    vander Aalst WMP, Ter Hofstede AHM, Kiepuszewski B, Barros AP (2003) Workflow patterns. Distrib Parallel Datab 14(1): 5–51CrossRefGoogle Scholar
  9. 9.
    Cook JE, Wolf AL (1998) Event-based detection of concurrency. In: sixth ACM SIGSOFT international symposium on foundations of software engineering. ACM Press, New YorkGoogle Scholar
  10. 10.
    Mannila H, Toivonen H, Verkamo AI (1997) Discovery of frequent episodes in event sequences. Data Min Knowl Discov 1(3): 259–289CrossRefGoogle Scholar
  11. 11.
    Cook JE, Wolf AL (1999) Software process validation: quantitatively measuring the correspondence of a process to a model. ACM Trans Softw Eng Methodol (TOSEM) 8(2): 147–176CrossRefGoogle Scholar
  12. 12.
    v Glabbeek RJ, Weijland WP (1996) Branching time and abstraction in bisimulation semantics. J ACM 43(3): 555–600CrossRefMathSciNetGoogle Scholar
  13. 13.
    Basten T, van der Aalst WMP (2001) Inheritance of behavior. J Log Algebr Program 47(2): 47–145zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    van der Aalst WMP, Basten T (2001) Identifying commonalities and differences in object life cycles using behavioral inheritance. In: ICATPN ’01 Proceedings of the 22nd international conference on application and theory of petri nets. Springer, London, pp 32–52Google Scholar
  15. 15.
    van der Aalst WMP (2001) Exterminating the dynamic change bug: a concrete approach to support workflow change. Info Syst Front 3(3): 297–317CrossRefGoogle Scholar
  16. 16.
    Ellis CA, Keddara K, Rozenberg G (1995) Dynamic change within workflow systems. In: COOCS, pp 10–21Google Scholar
  17. 17.
    van der Aalst WMP, van Dongen BF, Günther CW, Mans RS, de Medeiros AKA, Rozinat A, Rubin V, Song M, Verbeek HMWE, Weijters AJMM (2007) Prom 4.0: Comprehensive support for eal process analysis. In: Kleijn J, Yakovlev A (eds) ICATPN. Lecture Notes in Computer Science, vol 4546. Springer, Heidelberg, pp 484–494Google Scholar
  18. 18.
    Gaaloul W, Godart C (2006) A workflow mining tool based on logs statistical analysis. In: Zhang K, Spanoudakis G, Visaggio G (eds) SEKE, pp 595–600Google Scholar
  19. 19.
    Baïna K, Gaaloul W, Khattabi RE, Mouhou A (2006) Workflowminer: a new workflow patterns and performance analysis tool. In: 18th international conference on advanced information systems engineering (CAiSE’06) forum, Luxembourg, Grand-Duchy of LuxembourgGoogle Scholar
  20. 20.
    van der Aalst WMP, van Dongen BF (2002) Discovering workflow performance models from timed logs. In: First international conference on engineering and deployment of cooperative information systems. Springer, Heidelberg, pp 45–63Google Scholar
  21. 21.
    Weijters AJMM, van der Aalst WMP (2002) Workflow mining: discovering workflow models from event-based data. In: ECAI workshop on knowledge discovery and spatial Data, pp 78–84Google Scholar
  22. 22.
    Herbst J, Karagiannis D (2004) Workflow mining with inwolve. Comput Ind 53(3): 245–264CrossRefGoogle Scholar
  23. 23.
    Schimm G (2002) Process miner—a tool for mining process schemes from event-based Data. In: European conference on logics in AI. Springer, Heidelberg, pp 525–528Google Scholar
  24. 24.
    Gaaloul W, Baïna K, Godart C (2005) Towards mining structural workflow patterns. In: Andersen KV, Debenham JK, Wagner R (eds) DEXA. LNCS, vol 3588. Springer, Heidelberg, pp 24–33Google Scholar
  25. 25.
    Bultan T, Fu X, Hull R, Su J (2003) Conversation specification: a new approach to design and analysis of e-service composition. In: Proceedings of the twelfth international conference on World Wide Web. ACM Press, NewYork, pp 403–410Google Scholar
  26. 26.
    Hamadi R, Benatallah B (2003) A petri net-based model for web service composition. In: Proceedings of the Fourteenth Australasian database conference on database technologies 2003. Australian Computer Society, Inc., pp 191–200Google Scholar
  27. 27.
    Sayal M, Casati F, Shan M, Dayal U (2002) Business process cockpit. In: Proceedings of 28th international conference on very large data Bases (VLDB’02), pp 880–883Google Scholar
  28. 28.
    Grigori D, Casati F, Castellanos M, Dayal U, Sayal M, Shan MC (2004) Business process intelligence. Comput Ind 53(3): 321–343CrossRefGoogle Scholar
  29. 29.
    van der Aalst W, Dumas M, Ouyang C, Rozinat A, Verbeek H (2007) Conformance checking of service behavior. ACM Trans Internet Technol (TOIT). Special issue on Middleware for Service-Oriented ComputingGoogle Scholar
  30. 30.
    van der Aalst WMP (2004) Business alignment: Using process mining as a tool for delta analysis. In: CAiSE Workshops, vol 2, pp 138–145Google Scholar
  31. 31.
    Benatallah B, Casati F, Toumani F (2004) Analysis and management of web service protocols. In: ER, pp 524–541Google Scholar
  32. 32.
    Baïna K, Benatallah B, Casati F, Toumani F (2004) Model-driven web service development. In: CAiSE, pp 290–306Google Scholar
  33. 33.
    Agrawal R, Gunopulos D, Leymann F (1998) Mining process models from workflow logs. Lect Notes Comput Sci 1377: 469–498Google Scholar
  34. 34.
    Cook JE, Wolf AL (1998) Discovering models of software processes from event-based data. ACM Trans Softw Eng Methodol (TOSEM) 7(3): 215–249CrossRefGoogle Scholar
  35. 35.
    Cook JE, Wolf AL (1998) Event-based detection of concurrency. In: Proceedings of the 6th ACM SIGSOFT international symposium on foundations of software engineering, ACM Press, NewYork, pp 35–45Google Scholar
  36. 36.
    van der Aalst WMP, van Dongen BF, Herbst J, Maruster L, Schimm G, Weijters AJMM (2003) Workflow mining: a survey of issues and approaches. Data Knowl Eng 47(2): 237–267CrossRefGoogle Scholar
  37. 37.
    de Medeiros AKA, Weijters AJMM, van der Aalst WMP (2007) Genetic process mining: an experimental evaluation. Data Min Knowl Discov 14(2): 245–304CrossRefMathSciNetGoogle Scholar
  38. 38.
    Bergenthum R, Desel J, Lorenz R, Mauser S (2007) Process mining based on regions of languages. In: Alonso G, Dadam P, Rosemann M (eds) BPM. Lecture Notes in Computer Science, vol 4714. Springer, Heidelberg, pp 375–383Google Scholar
  39. 39.
    van der Aalst WMP, Reijers HA, Song M (2005) Discovering social networks from event logs. Comput Support Coop Work 14(6): 549–593CrossRefGoogle Scholar
  40. 40.
    van der Aalst WMP, de Beer HT, van Dongen BF (2005) Process mining and verification of properties: An approach based on temporal logic. In: Meersman R, Tari Z, Hacid MS, Mylopoulos J, Pernici B, Babaoglu Ö, Jacobsen HA, Loyall JP, Kifer M, Spaccapietra S (eds) OTM conferences (1). Lecture Notes in Computer Science, vol 3760. Springer, Heidelberg, pp 130–147Google Scholar
  41. 41.
    Wen L, van der Aalst WMP, Wang J, Sun J (2007) Mining process models with non-free-choice constructs. Data Min Knowl Discov 15(2): 145–180CrossRefGoogle Scholar
  42. 42.
    Gaaloul W, Bhiri S, Godart C (2004) Discovering workflow transactional behaviour event-based log. In: 12th International conference on cooperative information systems (CoopIS’04). LNCS, Larnaca, Cyprus. Springer, HeidelbergGoogle Scholar
  43. 43.
    Gaaloul W, Godart C (2005) Mining workflow recovery from event based logs. In: Bus process manage 3649:169–185Google Scholar
  44. 44.
    Bhiri S, Gaaloul W, Godart C (2006) Discovering and improving recovery mechanisms of compositeweb services. In: ICWS. IEEE Computer Society, NewYork, pp 99–110Google Scholar
  45. 45.
    Gaaloul W, Hauswirth M, Rouached M, Godart C (2007) Verifying composite service recovery mechanisms: a transactional approach based on event calculus. In: 15th International conference on cooperative information systems CoopIS07Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  1. 1.DERI-NUIGGalwayIreland
  2. 2.ENSIAS, Université Mohammed V-SouissiAgdal-RabatMorocco
  3. 3.LORIA-INRIA-UMR 7503Vandœuvre-les-Nancy CedexFrance

Personalised recommendations