Advertisement

High resolution for software-defined GPS-based SAR imaging using waveform-modulated range-compressed pulse: field experimental demonstration

  • Yu ZhengEmail author
  • Zhuxian Zhang
  • Lu Feng
  • Caixia Huang
  • Peidong Zhu
  • Peng Wu
Original Paper
  • 31 Downloads

Abstract

This paper presents an experimental demonstration with respect to a high-range-resolution imaging scheme for software-defined receiver-based passive GPS-based SAR, and a signal processing scheme for imaging is proposed correspondingly. In the proposed scheme, to reduce the computational complexity and high-memory requirement for receiver, GPS signals are down-converted to baseband for digitized collection at first. After performing range compression, the region of interest is selected based on the numbers of detected compressed pulses. Thereafter, the detected compressed pulses are up-sampled, modulated by a waveform with the frequency larger than bandwidth value and then spectrum-equalized for obtaining high-resolution range-compressed signals. The field results obtained from both land and ocean scenarios indicate that compared to the conventional signal processing scheme for imaging, indeed the proposed scheme can provide a significantly lower range ambiguity around the scene center; compared with the authors’ previous related work (Zheng et al. in Sensors, 2017.  https://doi.org/10.3390/s17071496), the proposed scheme is obviously more computationally efficient.

Keywords

GPS-SAR Range resolution Field experimental demonstration Computational efficient 

Notes

Acknowledgements

The research was funded by Hong Kong Research Grants Council (RGC) Competitive Earmarked Research Grant (Project No: PolyU 152151/17E), the research fund from the Research Institute of Sustainable Urban Development, Hong Kong Polytechnic University, and the research grant from Education Department of Hunan Province, China (Project No: 18C0758), and National Natural Science Foundation of China (61903049). We are very thankful to Mr. Yang Yang and Prof. Wu Chen from the Hong Kong Polytechnic University for providing the field GPS C/A code signal data for the experimental demonstration in this paper and helping with the respective technical issue involved in the experiments.

Compliance with ethical standards

Conflict of interest

The authors do not have conflicts of interest.

Human and animal rights

This research does not involve human participants and/or animals.

References

  1. 1.
    Attalah, M.A., Laroussi, T., Gini, F., Greco, M.S.: Range-Doppler fast block LMS algorithm for a DVB-T-based passive bistatic radar. SIViP 13(1), 27–34 (2019)CrossRefGoogle Scholar
  2. 2.
    Hadi, M.A., Tabassum, M.N., Alshebeili, S.: Compressive sensing based high-resolution passive bistatic radar. SIViP 11(4), 635–642 (2017)CrossRefGoogle Scholar
  3. 3.
    Zuo, R.: Bistatic synthetic aperture radar using GNSS as transmitters of opportunity. PhD Thesis, University of Birmingham (2012)Google Scholar
  4. 4.
    Zeng Z.: ’Passive bistatic SAR with GNSS transmitter and a stationary receiver’, PhD Thesis, University of Birmingham, (2013)Google Scholar
  5. 5.
    Zheng, Y., Yang, Y., Chen, W.: Analysis of radar sensing coverage of a passive GNSS-based SAR system. In: 2017 IEEE International Conference on Localization and GNSS (ICL-GNSS 2017). Nottingham, UK (2017)Google Scholar
  6. 6.
    Santi, F., Pastina, D., Bucciarelli, M.: Maritime moving target detection technique for passive bistatic radar with GNSS transmitters. In: 2017 18th IEEE International InRadar Symposium (IRS), pp. 1–10 (2017)Google Scholar
  7. 7.
    Ma, H., Antoniou, M., Pastina, D., Santi, F., Pieralice, F., Bucciarelli, M., Cherniakov, M.: Maritime moving target indication using passive GNSS-based bistatic radar. IEEE Trans. Aerosp. Electron. Syst. 54(1), 115–130 (2018)CrossRefGoogle Scholar
  8. 8.
    Clarizia, M.P., Chotiros, N.P., Vaccaro, M.G.: A GPS-reflectometry simulator for target detection over oceans. In: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, pp. 450–451 (2018).  https://doi.org/10.1109/IGARSS.2018.8519302
  9. 9.
    Ullo, S.L., Giangregorio, G., di Bisceglie, M., Galdi, C., Clarizia, M.P., Addabbo P.: Analysis of GPS signals backscattered from a target on the sea surface. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, TX 2017, pp. 2062–2065 (2017).  https://doi.org/10.1109/IGARSS.2017.8127387
  10. 10.
    Liu, F., Antoniou, M., Zeng, Z., Cherniakov, M.: Coherent change detection using passive GNSS-based BSAR: experimental proof of concept. IEEE Trans. Geo-sci. Remote Sens. 51(8), 4544–4555 (2013)CrossRefGoogle Scholar
  11. 11.
    Tzagkas, D.: Coherent change detection with GNSS-based SAR-experimental study. PhD Thesis, University of Birmingham (2018)Google Scholar
  12. 12.
    Zhang, Q., Antoniou, M., Chang, W., Cherniakov, M.: Spatial decorrelation in GNSS-based SAR coherent change detection. IEEE Trans. Geo-sci. Remote Sens. 53(1), 219–228 (2015)CrossRefGoogle Scholar
  13. 13.
    Antoniou, M., Cherniakov, M.: GNSS-based bistatic SAR: a signal processing view. EURASIP J. Adv. Signal Process. 1, 1–16 (2013)Google Scholar
  14. 14.
    Antoniou, M., Hong, Z., Zhangfan, Z., Zuo, R., Zhang, Q., Cherniakov, M.: Passive bistatic synthetic aperture radar imaging with Galileo transmitters and a moving receiver: experimental demonstration. IET Radar Sonar Navig. 7(9), 985–993 (2013)CrossRefGoogle Scholar
  15. 15.
    Liu, F., Antoniou, M., Zeng, Z., Cherniakov, M.: Point spread function analysis for BSAR with GNSS transmitters and long dwell times: theory and experimental confirmation. IEEE Geosci. Remote Sens. Lett. 10(4), 781–785 (2013)CrossRefGoogle Scholar
  16. 16.
    Santi, F., Antoniou, M., Pastina, D.: Point spread function analysis for GNSS-based multistatic SAR. IEEE Geosci. Remote Sens. Lett. 12(2), 304–308 (2015)CrossRefGoogle Scholar
  17. 17.
    Ma, H., Antoniou, M., Cherniakov, M.: Passive GNSS-based SAR resolution improvement using joint Galileo E5 signals. IEEE Geosci. Remote Sens. Lett. 12(8), 1640–1644 (2015)CrossRefGoogle Scholar
  18. 18.
    Shi, S., Liu, J., Li, T., Tian, W.: Basic performance of space-surface bistatic SAR using BeiDou satellites as transmitters of opportunity’. GPS Solut. 21, 727–737 (2016)CrossRefGoogle Scholar
  19. 19.
    Zeng, T., Zhang, T., Tian, W., Hu, C.: Recent progress in bistatic SAR with illuminators of opportunity. Sci. China Technol. Sci. 59(12), 1965–1967 (2016)CrossRefGoogle Scholar
  20. 20.
    Ma, H., Antoniou, M., Cherniakov, M., Pastina, D., Santi, F., Pieralice, F., Bucciarelli, M.: Maritime target detection using GNSS-based radar: experimental proof of concept. In: 2017 IEEE InRadar Conference (RadarConf), pp.  464–469 (2017)Google Scholar
  21. 21.
    Santi, F., Antoniou, M., Pastina, D., Tzagkas, D., Bucciarelli, M., Cherniakov, M.: Passive multi-static SAR with GNSS transmitters: first theoretical and experimental results with point targets. In: 10th European Conference on Synthetic Aperture Radar, pp. 1–4 (2014)Google Scholar
  22. 22.
    Zeng, T., Ao, D., Hu, C., Zhang, T., Liu, F., Tian, W., Lin, K.: Multiangle BSAR imaging based on BeiDou-2 navigation satellite system: experiments and preliminary results. IEEE Trans. Geosci. Remote Sens. 53(10), 5760–5773 (2015)CrossRefGoogle Scholar
  23. 23.
    Zeng, T., Zhang, T., Tian, W., Hu, C.: Space-surface bistatic SAR image enhancement based on repeat-pass coherent fusion with Beidou-2/Compass-2 as illuminators. IEEE Geosci. Remote Sens. Lett. 13(12), 1832–1836 (2016)CrossRefGoogle Scholar
  24. 24.
    Santi, F., Bucciarelli, M., Pastina, D., Antoniou, M., Cherniakov, M.: Spatial resolution improvement in GNSS-based SAR using multistatic acquisitions and feature extraction. IEEE Trans. Geo-sci. Remote Sens. 54(10), 6217–6231 (2016)CrossRefGoogle Scholar
  25. 25.
    Zheng, Y., Yang, Y., Chen, W.: A novel range compression algorithm for resolution enhancement in GNSS-SARs. Sensors 17(7), 1496 (2017)CrossRefGoogle Scholar
  26. 26.
    Zheng, Y., Yang, Y., Chen, W.: Object detectability enhancement under weak signals for passive GNSS-based SAR. SIViP (2019).  https://doi.org/10.1007/s11760-019-01493-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electronic Communication and Electrical EngineeringChangsha UniversityChangshaChina
  2. 2.Department of Land Surveying and Geo-informaticsThe Hong Kong Polytechnic UniversityHong KongChina
  3. 3.College of Electronic ScienceNational University of Defense TechnologyChangshaChina
  4. 4.College of Computer Engineering and Applied MathematicsChangsha UniversityChangshaChina

Personalised recommendations