Signal, Image and Video Processing

, Volume 13, Issue 7, pp 1339–1346 | Cite as

A two-stage framework of target detection in high-resolution hyperspectral images

  • Yanshan LiEmail author
  • Jianjie Xu
  • Rongjie Xia
  • Xianchen Wang
  • Weixin Xie
Original Paper


Hyperspectral images (HSIs) have been widely used in various areas, especially in the remote sensing field. Compared with traditional remote sensing HSI, the high-resolution HSI (HRHSI) owns high resolution in both spatial and spectral domains. Since most existing methods with automatic target detection are merely suitable for traditional remote sensing HSI with low resolution, they are unable to be applied directly on HRHSI. Therefore, this paper proposes a novel automatic target detection framework for HRHSI. The framework includes two stages: in Stage one, a new spectral curve spatial pyramid matching model called SC-SPM is established to search the potential target regions; in Stage two, a novel bounding box dilation is proposed to detect the target region precisely. Extensive experiments are carried out in different scenes, and the results demonstrate the superiority of proposed framework compared to those traditional target detection methods.


High-resolution hyperspectral image Target detection SPM Dilation 



This work was partially supported by National Natural Science Foundation of China (No. 61771319), Natural Science Foundation of Guangdong Province (No. 2017A030313343), Shenzhen Science and Technology Project (No. JCYJ20180507182259896).

Supplementary material

11760_2019_1470_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 kb)
11760_2019_1470_MOESM2_ESM.docx (6.6 mb)
Supplementary material 2 (DOCX 6779 kb)


  1. 1.
    Harsanyi, J.C., Chang, C.I.: Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 32, 779–785 (1994)CrossRefGoogle Scholar
  2. 2.
    Besson, O., Coluccia, A., Chaumette, E., Ricci, G., Vincent, F.: Generalized likelihood ratio test for detection of Gaussian rank-one signals in Gaussian noise with unknown statistics. IEEE Trans. Signal Process. 65, 1082–1092 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chang, C.I., Liu, J., Chieu, B., Ren, H., Wang, C.M., Lo, C., Chung, P.C., Yang, C.W., Ma, D.: Generalized constrained energy minimization approach to subpixel target detection for multispectral imagery. Opt. Eng. 39, 1275–1281 (2000)CrossRefGoogle Scholar
  4. 4.
    Ziemann, A., Theiler, J.: Variable target detection using Simplex ACE. In: IEEE Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July, 2017; pp. 1347–1350Google Scholar
  5. 5.
    Liu, W., Feng, X., Wang, S., Hu, B., Gan, Y., Zhang, X., Lei, T.: Random selection-based adaptive saliency-weighted RXD anomaly detection for hyperspectral imagery. Int. J. Remote Sens. 39, 2139–2158 (2018)CrossRefGoogle Scholar
  6. 6.
    Liu, Y., Zheng, F.: Object-oriented and multi-scale target classification and recognition based on hierarchical ensemble learning. Comput. Electr. Eng. 62, 538–554 (2017)CrossRefGoogle Scholar
  7. 7.
    Keyport, R.N., Oommen, T., Martha, T.R., Sajinkumar, K.S., Gierke, J.S.: A comparative analysis of pixel-and object-based detection of landslides from very high-resolution images. Int. J. Appl. Earth Obs. Geoinf. 64, 1–11 (2018)CrossRefGoogle Scholar
  8. 8.
    Liu, B., Li, Y., Zhang, Q., Han, L.: The application of GF-1 imagery to detect ships on the Yangtze River. J. Indian Soc. Remote Sens. 45, 179–183 (2017)CrossRefGoogle Scholar
  9. 9.
    Valero, S., Salembier, P., Chanussot, J.: Object recognition in urban hyperspectral images using Binary Partition Tree representation. Pattern Recogn. Lett. 56, 4098–4101 (2015)CrossRefGoogle Scholar
  10. 10.
    Wang, Y., Huang, S., Liu, Z., Wang, H., Liu, D.: Target detection for hyperspectral image based on multi-scale analysis. J. Opt. 46, 75–82 (2017)CrossRefGoogle Scholar
  11. 11.
    Li, W., Wu, G., Du, Q.: Transferred deep learning for anomaly detection in hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 14, 597–601 (2017)CrossRefGoogle Scholar
  12. 12.
    Chang, S., Du, B., Zhang, L., Zhao, R.: IBRS: an iterative background reconstruction and suppression framework for hyperspectral target detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 3406–3417 (2017)CrossRefGoogle Scholar
  13. 13.
    Wang, H., Celik, T.: Sparse representation-based hyperspectral image classification. SIViP 11, 1–9 (2018)Google Scholar
  14. 14.
    Li, Y., Shi, W., Liu, A.: A Harris corner detection algorithm for multispectral images based on the correlation. In 6th International conference on wireless, mobile and multi-media, Beijing, China, 20–23 November, 2015, pp. 161–165Google Scholar
  15. 15.
    Li, Y., Shi, W.: A new framework of hyperspectral image classification based on spatial spectral interest point. In: IEEE 13th International Conference on Signal Processing, Chengdu, China, 6–10 November, 2016, pp. 733–736Google Scholar
  16. 16.
    Li, Y., Xu, J., Huang, Q., Xie, W., Li, X.: Extreme-constrained spatial-spectral corner detector for image-level hyperspectral image classification. Pattern Recogn. Lett. 109, 110–199 (2018)CrossRefGoogle Scholar
  17. 17.
    Sakarya, U.: Dimension reduction using global and local pattern information-based maximum margin criterion. SIViP 10, 903–909 (2016)CrossRefGoogle Scholar
  18. 18.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA, 17–22 June, 2006, pp. 2169–2178Google Scholar
  19. 19.
    Kim, J., Liu, C., Sha, F., et al.: Deformable spatial pyramid matching for fast dense correspondences. In: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition, Portland, OR, USA, 23–28 June, 2013, pp. 2307–2314Google Scholar
  20. 20.
    Li, C., Hamza, A.B.: Intrinsic spatial pyramid matching for deformable 3d shape retrieval. Int. J. Multimed. Inf. Retr. 2, 261–271 (2013)CrossRefGoogle Scholar
  21. 21.
    Renza, D., Martinez, E., Molina, I.: Unsupervised change detection in a particular vegetation land cover type using spectral angle mapper. Adv. Space Res. 59, 2019–2031 (2017)CrossRefGoogle Scholar
  22. 22.
    Huang, C.T., Lin, H.H., Su, C.H.: Polygonal object dilation and packing in vector space for die-cutting machine tools. In: 2017 IEEE International Conference on Applied System Innovation, Sapporo, Japan, 13–17 May, 2017, pp. 1793–1796Google Scholar
  23. 23.
    Kudo, Y., Aoki, Y.: Dilated convolutions for image classification and object localization. In: 2017 IEEE Fifteenth IAPR International Conference on Machine Vision Applications, Nagoya, Japan, 8–12 May, 2017, pp. 452–455Google Scholar
  24. 24.
    Qin, X., Liao, M., Zhang, L., Yang, M.: Structural health and stability assessment of high-speed railways via thermal dilation mapping with time-series InSAR analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 2999–3010 (2017)CrossRefGoogle Scholar
  25. 25.
    González, L.C., Moreno, R., Escalante, H.J., Martínez, F., Carlos, M.R.: Learning roadway surface disruption patterns using the bag of words representation. IEEE Trans. Intell. Transp. Syst. 18, 2916–2928 (2017)CrossRefGoogle Scholar
  26. 26.
    Chen, H., Xie, K., Wang, H., Zhao, C.: Scene image classification using locality-constrained linear coding based on histogram intersection. Multimed Tools Appl. 77, 4081–4092 (2018)CrossRefGoogle Scholar
  27. 27.
    Geng, X., Yang, W., Ji, L., Wang, F., Zhao, Y.: The match filter (MF) is always superior to constrained energy minimization (CEM). Remote Sens. Lett. 8, 696–702 (2017)CrossRefGoogle Scholar
  28. 28.
    Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July, 2017, pp. 6517–6525Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.ATR National Key Laboratory of Defense TechnologyShenzhen UniversityShenzhenChina

Personalised recommendations