Advertisement

Automatic visual inspection of thermoelectric metal pipes

  • Daniel VriesmanEmail author
  • Alceu S. Britto
  • Alessandro Zimmer
  • Alessandro L. Koerich
  • Rodrigo Paludo
Original Paper
  • 10 Downloads

Abstract

This paper presents the main aspects of the design of an image acquisition and processing approach that can be inserted into thermoelectric metal pipe systems and travel inside the pipes to capture images from the inner surface of such pipes for further analysis. After the image capture, a preprocessing is applied based on iris recognition, which transforms the image from a Cartesian coordinate system to a polar coordinate system, which allows a better texture analysis of the internal surface of the pipe. The extracted information is used to train a classifier capable of automatically identifying segments that present some type of corrosion or defects. The experimental results in a dataset of 6150 images using two textural features have shown that the proposed classification approach can achieve accuracy between 96 and 98% in the test set.

Keywords

Visual inspection Texture Fusion of features Automatic inspection 

Notes

Acknowledgements

The authors of this work acknowledge the ANEEL for the Research and Development program, the Neonergia Group, for the project funding and the LACTEC for the infra structure and support.

References

  1. 1.
    Obrutsky, L., Renaud, J., Lakhan, R.: Overview of steam generator tube-inspection technology. CINDE J. 35(2), 5–13 (2009)Google Scholar
  2. 2.
    Obrutsky, L., Renaud, J., Lakhan, R.: Steam generator inspections: faster, cheaper and better, are we there yet? In: IV Conferencia Panamericana de END, pp. 1–17 (2007)Google Scholar
  3. 3.
    Malamas, E.N., Petrakis, E.G.M., Zervakis, M., Petit, L., Legat, J.D.: A survey on industrial vision systems, applications and tools. Image Vis. Comput. 21, 171–188 (2003)CrossRefGoogle Scholar
  4. 4.
    Ngan, H.Y.T., Pang, G.K.H., Yung, N.H.C.: Automated fabric defect detection: a review. Image Vis. Comput. 29, 442–458 (2011)CrossRefGoogle Scholar
  5. 5.
    Mansano, M., Pavesi, L., Oliveira, L., Britto, A., Koerich, A.: Inspection of metallic surfaces using local binary patterns. In: 37th Annual Conference on IEEE Industrial Electronics Society (IECON 2011), pp. 2227–2231. IEEE (2011)Google Scholar
  6. 6.
    Debenest, P., Guarnieri, M., Hirose, S.: Pipetron series-robots for pipe inspection. In: Proceedings of the 3rd International Conference on Applied Robotics for the Power Industry, pp. 1–6 (2014)Google Scholar
  7. 7.
    Maglietta, R., Milella, A., Caccia, M., Bruzzone, G.: A vision-based system for robotic inspection of marine vessels. Signal Image Video Process 12, 471–478 (2018)CrossRefGoogle Scholar
  8. 8.
    Sinha, S.K., Fieguth, P.W.: Neuro-fuzzy network for the classification of buried pipe defects. Autom. Constr. 15(1), 73–83 (2006)CrossRefGoogle Scholar
  9. 9.
    Huynh, P., Ross, R., Martchenko A., Devlin, J.: Dou-edge evaluation algorithm for automatic thin crack detection in pipelines. In: International Conference on Signal and Image Processing Applications (ICSIPA), pp. 191–196. IEEE (2015)Google Scholar
  10. 10.
    Ogai, H., Bhattacharya, B.: Pipe inspection robots for structural health and condition monitoring. In: Intelligent Systems, Control and Automation: Science and Engineering, pp. 107–122. Springer (2018)Google Scholar
  11. 11.
    Myrans, J., Kapelan, Z., Everson, R.: Automated detection of faults in wastewater pipes from CCTV footage by using random forests. Procedia Eng. 154, 36–41 (2016)CrossRefGoogle Scholar
  12. 12.
    Rzhanov, Y.: Photo-mosaicing of images of pipe inner surface. Signal Image Video Process. 7, 865–871 (2013)CrossRefGoogle Scholar
  13. 13.
    Kain, V., Roychowdhury, S., Ahmedabadi, P., Barua, D.K.: Flow accelerated corrosion: experience from examination of components from nuclear power plants. Eng. Fail. Anal. 18(8), 2028–2041 (2011)CrossRefGoogle Scholar
  14. 14.
    Costa, Y.M., Oliveira, L., Koerich, A.L., Gouyon, F., Martins, J.: Music genre classification using LBP textural features. Signal Process. 92(11), 2723–2737 (2012)CrossRefGoogle Scholar
  15. 15.
    Zavaschi, T.H.H., Britto, A.S., Oliveira, L.E.S., Koerich, A.L.: Fusion of feature sets and classifiers for facial expression recognition. Expert Syst Appl 40(2), 646–655 (2013)CrossRefGoogle Scholar
  16. 16.
    Brahnam, S., Jain, L.C., Nanni, L., Lumini, A.: Local Binary Patterns: New Variants and Applications, Studies in Computational Intelligence, vol. 506, pp. 1–17, (2014)Google Scholar
  17. 17.
    Costa, Y., Oliveira, L., Koerich, A.L., Gouyon, F.: Music genre recognition using gabor filters and lpq texture descriptors. In: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 67–74. Springer, Berlin (2013)Google Scholar
  18. 18.
    Pontes, J.K., Britto, A.S., Fookes, C., Koerich, A.L.: A flexible hierarchical approach for facial age estimation based on multiple features. Pattern Recognit. 54, 34–51 (2016)CrossRefGoogle Scholar
  19. 19.
    Subban, R., Dattatreya, N.S.: Efficient iris recognition using haralick features based extraction and fuzzy particle swarm optimization. Clust. Comput. 21(1), 1–12 (2017)Google Scholar
  20. 20.
    Cavalin, P., Oliveira, L.S., Koerich, A.L., Britto, A.S.: Wood defect detection using grayscale images and an optimized feature set. In: IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, pp. 3408–3412. Springer (2006)Google Scholar
  21. 21.
    Costa, Y.M.G., Oliveira, L.E.S., Koerich, A.L., Gouyon, F.: Comparing textural features for music genre classification. In: The 2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2012)Google Scholar
  22. 22.
    Daugman, J.: The importance of being random: statistical principles of iris recognition. Pattern Recognit. 36(2), 279–291 (2003)CrossRefGoogle Scholar
  23. 23.
    Llano, E.J., Vázquez, M.S.G., Vargas, J.M.C., Fuentes, L.M.Z., Acosta, A.A.R.: Optimized robust multi-sensor scheme for simultaneous video and image iris recognition. In: Pattern Recognition Letters, vol. 101, pp. 44–51. Elsevier (2018)Google Scholar
  24. 24.
    Araujo, H., Dias, J.M.: An introduction to the log-polar mapping. In: Proceedings II Workshop on Cybernetic Vision, pp. 139–144 (1997)Google Scholar
  25. 25.
    Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: 3rd International Conference on Image and Signal Processing, vol. 101, pp. 236–243. Springer (2008)Google Scholar
  26. 26.
    Haralick, R.M., Dinstein, I., Shanmugam, K.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)CrossRefGoogle Scholar
  27. 27.
    Martins, J.G., Oliveira, L.S., Sabourin, R.: Combining textural descriptors for forest species recognition. In: IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, pp. 1483–1488. IEEE (2012)Google Scholar
  28. 28.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(7), 179–188 (1936)CrossRefGoogle Scholar
  29. 29.
    Yadav, A.R., Anand, R.S., Dewal, M.L., Gupta, S.: Multiresolution local binary pattern variants based texture feature extraction techniques for efficient classification of microscopic images of hardwood species. Appl. Soft Comput. J. 32, 101–112 (2015)CrossRefGoogle Scholar
  30. 30.
    Kadrolkar, A., SupIV, F.: Intent recognition of torso motion using wavelet transform feature extraction and linear discriminant analysis ensemble classification. Biomed. Signal Process. Control 38, 250–264 (2017)CrossRefGoogle Scholar
  31. 31.
    Ding, Y., Pardon, M., Duan, J., Agostini, A., Faas, H., Ward, W., Auer, D., Easton, F., Bai, L.: Novel methods for microglia segmentation, feature extraction, and classification. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(6), 1366–1377 (2016)CrossRefGoogle Scholar
  32. 32.
    Cortes, C., Vapnik, V.: Support-vector networks. In: Machine Learning, pp. 273–297 (1995)Google Scholar
  33. 33.
    Ledoit, O., Wolf, M.: Honey, I shrunk the sample covariance matrix. Eng. Fail. Anal. 30(4), 106–119 (2004)Google Scholar
  34. 34.
    Yang, D., Subramanian, G., Duan, J., Gao, S., Bai, L., Chandramohanadas, R., Ai, Y.: A portable image-based cytometer for rapid malaria detection and quantification. PLoS ONE 12, 1–18 (2017)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Federal University of ParanáCuritibaBrazil
  2. 2.Pontifical Catholic University of ParanáCuritibaBrazil
  3. 3.Technische Hochschule IngolstadtIngolstadtGermany
  4. 4.École de Technologie SupérieureUniversité du QuébecMontréalCanada
  5. 5.Lactec InstituteCuritibaBrazil

Personalised recommendations