High-resolution direct position determination based on eigenspace using a single moving ULA

  • G. Z. WuEmail author
  • M. Zhang
  • F. C. Guo
Original Paper


High-resolution direct position determination (DPD) using a single moving uniform linear array is considered. In this paper, we firstly propose an improved DPD model based on eigenspace. This model exploits both signal subspaces and noise subspaces which results in higher resolution than those utilizing minimum variance distortionless response, multiple signal classification or subspace fitting. In order to achieve rapid and high precision localization, a hybrid calculation algorithm which combines particle swarm optimization using a ring topology and Broyden–Fletcher–Goldfarb–Shanno is proposed. This algorithm can extract multiple emitter positions with less computational complexity. We combine the improved DPD model and the hybrid calculation algorithm and examine its performance via numerical simulations. The results show that the proposed method can reach Cramer–Rao lower bound when the signal-to-noise ratio is moderate.


Direction position determination Eigenspace High resolution Particle swarm optimization Ring topology Broyden–Fletcher–Goldfarb–Shanno 



  1. 1.
    Amar, A., Weiss, A.J.: Advances in direct position determination. In: Processing Workshop Proceedings, 2004 Sensor Array and Multichannel Signal, pp. 584–588.
  2. 2.
    Amar, A., Weiss, A.J.: Localization of narrowband radio emitters based on doppler frequency shifts. IEEE Trans. Signal Process. 56(11), 5500–5508 (2008). MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bialer, O., Raphaeli, D., Weiss, A.J.: Maximum-likelihood direct position estimation in dense multipath. IEEE Trans. Veh. Technol. 62(5), 2069–2079 (2013). CrossRefGoogle Scholar
  4. 4.
    Capon, J.: High-resolution frequency-wavenumber spectrum analysis. P. IEEE 57(8), 1408–1418 (1969)CrossRefGoogle Scholar
  5. 5.
    Carter, G.C.: Coherence and Time Delay Estimation. IEEE Press, New York, NY (1993)Google Scholar
  6. 6.
    Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002). CrossRefGoogle Scholar
  7. 7.
    Demissie, B., Oispuu, M., Ruthotto, E.: Localization of multiple sources with a moving array using subspace data fusion. In: 2008 11th International Conference on Information Fusion, pp. 1–7Google Scholar
  8. 8.
    Grenier, D., Elahian, B., Blanchard-Lapierre, A.: Joint delay and direction of arrivals estimation in mobile communications. Signal Image Video Process. 10(1), 45–54 (2016). CrossRefGoogle Scholar
  9. 9.
    Ho, K.C., Chan, Y.T.: Geolocation of a known altitude object from TDOA and FDOA measurements. IEEE Trans. Aerosp. Electron. Syst. 33(3), 770–783 (1997). CrossRefGoogle Scholar
  10. 10.
    Li, X.D.: Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 14, 150–169 (2010)CrossRefGoogle Scholar
  11. 11.
    Oispuu, M.: Direct state determination of multiple sources with intermittent emission. In: 2009 17th European Signal Processing Conference, pp. 1948–1952Google Scholar
  12. 12.
    Oispuu, M., Nickel, U.: Direct detection and position determination of multiple sources with intermittent emission. Signal Process. 90(12), 3056–3064 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Qin, T., Lu, Z., Ba, B., Wang, D.: A decoupled direct positioning algorithm for strictly noncircular sources based on doppler shift and angle of arrival. IEEE Access 6, 344449–34461 (2018). Google Scholar
  14. 14.
    Tirer, T., Weiss, A.J.: High resolution direct position determination of radio frequency sources. IEEE Signal Process. Lett. 23(2), 192–196 (2016). CrossRefGoogle Scholar
  15. 15.
    Tirer, T., Weiss, A.J.: High resolution localization of narrowband radio emitters based on doppler frequency shifts. Signal Process. 141, 288–298 (2017). CrossRefGoogle Scholar
  16. 16.
    Tzafri, L., Weiss, A.J.: High-resolution direct position determination using MVDR. IEEE Trans. Wireless Commun. 15(9), 6449–6461 (2016). CrossRefGoogle Scholar
  17. 17.
    Tzoreff, E., Tzoreff, E., Weiss, A.J.: Expectation-maximization algorithm for direct position determination. Signal Process. 133, 32–39 (2017). CrossRefGoogle Scholar
  18. 18.
    Ulman, R., Geraniotis, E.: Wideband TDOA/FDOA processing using summation of short-time CAF’s. IEEE Trans. Signal Process. 47(12), 3193–3200 (1999)CrossRefGoogle Scholar
  19. 19.
    Weiss, A.J.: Direct position determination of narrowband radio frequency transmitters. IEEE Signal Process Lett. 11(5), 513–516 (2004). MathSciNetCrossRefGoogle Scholar
  20. 20.
    Weiss, A.J.: Direct geolocation of wideband emitters based on delay and doppler. IEEE Trans. Signal Process. 59(6), 2513–2521 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Weiss, A.J., Amar, A.: Direct position determination of multiple radio signals. EURASIP J. Adv. Signal Process. 2005(1), 37–49 (2005)CrossRefzbMATHGoogle Scholar
  22. 22.
    Wu, G., Zhang, M., Guo, F., Xiao, X.: Direct position determination of coherent pulse trains based on doppler and doppler rate. Electronics 7(10), 1–16 (2018). CrossRefGoogle Scholar
  23. 23.
    Wu, L., Liu, Z., Jiang, W.: A direction finding method for spatial optical beam-forming network based on sparse bayesian learning. Signal Image Video Process. 11(2), 1–7 (2016)Google Scholar
  24. 24.
    Zhang, X.F., Lv, W., Shi, Y., Zhao, R.N., Xu, D.Z.: A novel DOA estimation algorithm based on eigen space. In: International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2007, pp. 551–554. IEEE (2007)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information SystemNational University of Defense TechnologyChangshaPeople’s Republic of China

Personalised recommendations