Quadri-histogram equalization using cutoff limits based on the size of each histogram with preservation of average brightness

  • Isidro Augusto Brizuela PinedaEmail author
  • Rubén Darío Medina Caballero
  • Juan José Cáceres Silva
  • Julio César Mello Román
  • José Luis Vázquez Noguera
Original Paper


The traditional methods of equalization based on the histogram increase the contrast of the images, at the expense of great changes in the average brightness of the image and loss of information, producing images with an unnatural appearance. Consequently, we desire to develop a technique of contrast enhancement that preserves the average brightness of the image and thus avoids the saturation levels that cause the loss of information. We present the quadri-histogram equalization with limited contrast, an algorithm that divides the histogram into four subhistograms, which are equalized independently with bounds on the contrast improvement. These bounds are designed to constrain the distortion on the image, and our experimental results show that the proposed method preserves both the average brightness and the details of the images, compared to several methods found in the literature.


Contrast enhancement Loss of information Limited contrast Average brightness Equalization 



  1. 1.
    Wang, Q., Ward, R.K.: Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Trans. Consum. Electron. 53(2), 757–764 (2007)CrossRefGoogle Scholar
  2. 2.
    Abdullah-Al-Wadud, M., Kabir, M.H., Akber Dewan, M.A., Chae, O.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)CrossRefGoogle Scholar
  3. 3.
    Ooi, C.H., Kong, N.S.P., Ibrahim, H., Juinn Chieh, D.C.: Enhancement of color microscopic images using Toboggan method. In: Proceedings of International Conference on Future Computer and Communications, pp. 203–205 (2009)Google Scholar
  4. 4.
    Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)CrossRefGoogle Scholar
  5. 5.
    Ooi, C.H., Kong, N.S.P., Ibrahim, H.: Bi-histogram equalization with a plateau limit for digital image processing. IEEE Trans. Consum. Electron. 55(4), 2072–2080 (2009)CrossRefGoogle Scholar
  6. 6.
    Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 45(1), 68–75 (1999)CrossRefGoogle Scholar
  7. 7.
    Chen, S.D., Ramli, A.R.: Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Consum. Electron. 49(4), 1310–1319 (2003)CrossRefGoogle Scholar
  8. 8.
    Ooi, C.H., Isa, N.A.M.: Adaptive contrast enhancement methods with brightness preserving. IEEE Trans. Consum. Electron. 56(4), 2543–2551 (2010)CrossRefGoogle Scholar
  9. 9.
    Lim, S.H., Isa, N.A.M., Ooi, C.H., Toh, K.K.V.: A new histogram equalization method for digital image enhancement and brightness preservation. Signal Image Video Process. 9, 675–689 (2013)CrossRefGoogle Scholar
  10. 10.
    Aquino-Morínigo, P.B., Lugo-Solís, F.R., Pinto-Roa, D.P., Ayala, H.L., Noguera, J.L.: Bi-histogram equalization using two plateau limits. SIViP 11, 857 (2017).
  11. 11.
    Yao, Z., Lai, Z., Wang, C., Xia, W.: Brightness preserving and contrast limited bihistogram equalization for image enhancement. In: The 2016 3rd International Conference on Systems and Informatics (ICSAI 2016) (2016)Google Scholar
  12. 12.
    Ibrahim, H., Kong, N.S.P.: Image sharpening using sub-regions histogram equalization. IEEE Trans. Consum. Electron. 55(2), 891–895 (2009)CrossRefGoogle Scholar
  13. 13.
    Pizer, S.M., Johnston, R.E., Ericksen, J.P., Yankaskas, B.C., Muller, K.E.: Contrast-limited adaptive histogram equalization: speed and effectiveness. In: Proceedings of the First Conference on Visualization in Biomedical Computing, pp. 337–345 (1990)Google Scholar
  14. 14.
    Kim, T., Paik, J.: Adaptive contrast enhancement using gain-controllable clipped histogram equalization. IEEE Trans. Consum. Electron. 54(4), 1803–1810 (2008)CrossRefGoogle Scholar
  15. 15.
    Aedla, R., Siddaramaiah, D.G., Reddy, D.V.: A comparative analysis of histogram equalization based techniques for contrast enhancement and brightness preserving. Int. J. Signal Process. Image Process. Pattern Recognit. 6(5), 353–366 (2013)Google Scholar
  16. 16.
    Gordon, R., Rangayyan, R.M.: Feature enhancement of film mammograms using fixed and adaptive neighborhoods. Appl. Opt. 23(4), 560–564 (1984)CrossRefGoogle Scholar
  17. 17.
    Ying Z., Li G., Ren Y., Wang R., Wang W.: A new image contrast enhancement algorithm using exposure fusion framework. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) Computer Analysis of Images and Patterns. CAIP 2017. Lecture Notes in Computer Science, vol. 10425. Springer, Cham (2017)Google Scholar
  18. 18.
    Kandeel, A.A., Abbas, A.M., Hadhoud, M.M., El-Saghir, Z.: A study of a modified histogram based fast enhancement algorithm (MHBFE). Signal Image Process. Int. J. (SIPIJ) 5(1), 55 (2014)CrossRefGoogle Scholar
  19. 19.
    Deb, K.: Multi-objective Optimization. Search Methodologies, pp. 403–449. Springer, Boston, MA (2014)Google Scholar
  20. 20.
    Román, J.C.M., Ayala, H.L., Noguera, J.L.V.: Top-hat transform for enhancement of aerial thermal images. In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Niteroi, pp. 277–284 (2017)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Isidro Augusto Brizuela Pineda
    • 1
    Email author
  • Rubén Darío Medina Caballero
    • 1
  • Juan José Cáceres Silva
    • 2
  • Julio César Mello Román
    • 1
  • José Luis Vázquez Noguera
    • 1
  1. 1.Polytechnic SchoolNational University of AsuncionSan LorenzoParaguay
  2. 2.Department of Computer ScienceRoyal Holloway, University of LondonEghamUK

Personalised recommendations