Advertisement

Color image segmentation using genetic algorithm with aggregation-based clustering validity index (CVI)

  • Ahmad KhanEmail author
  • Zia ur Rehman
  • Muhammad Arfan Jaffar
  • Javid Ullah
  • Ahmad Din
  • Akbar Ali
  • Niamat Ullah
Original Paper
  • 22 Downloads

Abstract

Clustering validity index (CVI) plays an important role in data partitioning and image segmentation. In this paper, a new CVI is proposed to perform the color image segmentation. The proposed CVI combines compactness, separation and overlap to assess the clustering quality effectively. The aggregation operators (t-norms and t-conorms) are used to build a new reliable and robust overlap measure. Moreover, a genetic algorithm is employed to dynamically optimize the clusters centroids and get the best possible data partition. The clustering of super-pixels is performed to reduce the computational cost and convergence time. The genetic algorithm with new clustering validity index is able to find the best data partitioning. The performance of the proposed algorithm is evaluated on the Berkeley image segmentation database. The extensive experimentation shows that the proposed algorithm performs better compared to other state-of-the-art methods.

Keywords

Clustering validity index (CVI) Clustering Segmentation t-norms Super-pixels Genetic algorithm Overlap Compactness Separation 

Notes

References

  1. 1.
    Zhang, X., Su, H., Yang, L., Zhang, S.: Fine-grained histopathological image analysis via robust segmentation and large-scale retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5361–5368 (2015)Google Scholar
  2. 2.
    Belloulata, K., Belallouche, L., Belalia, A., Kpalma, K.: Region based image retrieval using shape-adaptive dct. In: 2014 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), pp. 470–474. IEEE (2014)Google Scholar
  3. 3.
    Ahmad, J., Sajjad, M., Mehmood, I., Rho, S., Baik, S.W.: Saliency-weighted graphs for efficient visual content description and their applications in real-time image retrieval systems. J. Real Time Image Process. 13(3), 431–447 (2017)Google Scholar
  4. 4.
    Tsochatzidis, L., Zagoris, K., Arikidis, N., Karahaliou, A., Costaridou, L., Pratikakis, I.: Computer-aided diagnosis of mammographic masses based on a supervised content-based image retrieval approach. Pattern Recognit. 71, 106–117 (2017)Google Scholar
  5. 5.
    Ghosh, N., Agrawal, S., Motwani, M.: A survey of feature extraction for content-based image retrieval system. In: Proceedings of International Conference on Recent Advancement on Computer and Communication, pp. 305–313. Springer (2018)Google Scholar
  6. 6.
    Irtaza, A., Adnan, S.M., Ahmed, K.T., Jaffar, A., Khan, A., Javed, A., Mahmood, M.T.: An ensemble based evolutionary approach to the class imbalance problem with applications in CBIR. Appl. Sci. 8(4), 495 (2018)Google Scholar
  7. 7.
    Hsu, W.-Y.: Segmentation-based compression: new frontiers of telemedicine in telecommunication. Telemat. Inform. 32(3), 475–485 (2015)Google Scholar
  8. 8.
    Akbari, M., Liang, J., Han, J.: Dsslic: deep semantic segmentation-based layered image compression. arXiv:1806.03348 (2018)
  9. 9.
    Song, X., Huang, Q., Chang, S., He, J., Wang, H.: Lossless medical image compression using geometry-adaptive partitioning and least square-based prediction. Med. Biol. Eng. Comput. 56(6), 957–966 (2018)Google Scholar
  10. 10.
    Li, S., Wang, J., Zhu, Q.: Adaptive bit plane quadtree-based block truncation coding for image compression. In: Ninth International Conference on Graphic and Image Processing (ICGIP 2017), vol 10615, p. 106151K. International Society for Optics and Photonics (2018)Google Scholar
  11. 11.
    Borji, A., Cheng, M.-M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)MathSciNetGoogle Scholar
  12. 12.
    Schwarz, M., Milan, A., Periyasamy, A.S., Behnke, S.: RGB-D object detection and semantic segmentation for autonomous manipulation in clutter. Int. J. Robot. Res. 37(4–5), 437–451 (2018)Google Scholar
  13. 13.
    Wei, Y., Shen, Z., Cheng, B., Shi, H., Xiong, J., Feng, J, Huang, T.: Ts2c: tight box mining with surrounding segmentation context for weakly supervised object detection. In: European Conference on Computer Vision, pp. 454–470. Springer, Cham (2018)Google Scholar
  14. 14.
    Wang, W., Shen, J., Shao, L.: Video salient object detection via fully convolutional networks. IEEE Trans. Image Process. 27(1), 38–49 (2018)MathSciNetGoogle Scholar
  15. 15.
    Wang, W., Shen, J., Yang, R., Porikli, F.: Saliency-aware video object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 1, 20–33 (2018)Google Scholar
  16. 16.
    Wang, W., Shen, J., Porikli, F., Yang, R.: Semi-supervised video object segmentation with super-trajectories. IEEE Trans. Pattern Anal. Mach. Intell. (2018).  https://doi.org/10.1109/TPAMI.2018.2819173
  17. 17.
    Ullah, J., Khan, A., Jaffar, M.A.: Motion cues and saliency based unconstrained video segmentation. Multimed. Tools Appl. 77(6), 7429–7446 (2018)Google Scholar
  18. 18.
    Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Learning to track for spatio-temporal action localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3164–3172 (2015)Google Scholar
  19. 19.
    Mosabbeb, E.A., Cabral, R., De la Torre, F., Fathy, M.: Multi-label discriminative weakly-supervised human activity recognition and localization. In: Asian Conference on Computer Vision, pp. 241–258. Springer (2014)Google Scholar
  20. 20.
    Gu, F., Khoshelham, K., Valaee, S., Shang, J., Zhang, R.: Locomotion activity recognition using stacked denoising autoencoders. IEEE Internet Things J. 5(3), 2085–2093 (2018)Google Scholar
  21. 21.
    Noor, M.H.M., Salcic, Z., Kevin, I., Wang, K.: Adaptive sliding window segmentation for physical activity recognition using a single tri-axial accelerometer. Pervasive Mob. Comput. 38, 41–59 (2017)Google Scholar
  22. 22.
    Triboan, D., Chen, L., Chen, F., Wang, Z.: Semantic segmentation of real-time sensor data stream for complex activity recognition. Personal Ubiquitous Comput. 21(3), 411–425 (2017)Google Scholar
  23. 23.
    Jalal, A., Kim, Y.-H., Kim, Y.-J., Kamal, S., Kim, D.: Robust human activity recognition from depth video using spatiotemporal multi-fused features. Pattern Recognit. 61, 295–308 (2017)Google Scholar
  24. 24.
    Shen, J., Du, Y., Li, X., et al.: Interactive segmentation using constrained Laplacian optimization. IEEE Trans. Circuits Syst. Video Technol. 24(7), 1088–1100 (2014)Google Scholar
  25. 25.
    Shen, J., Peng, J., Dong, X., Shao, L., Porikli, F.: Higher order energies for image segmentation. IEEE Trans. Image Process. 26(10), 4911–4922 (2017)MathSciNetGoogle Scholar
  26. 26.
    Dong, X., Shen, J., Shao, L., Van Gool, L.: Sub-markov random walk for image segmentation. IEEE Trans. Image Process. 25(2), 516–527 (2016)MathSciNetGoogle Scholar
  27. 27.
    Peng, J., Shen, J., Li, X.: High-order energies for stereo segmentation. IEEE Trans. Cybern. 46(7), 1616–1627 (2016)Google Scholar
  28. 28.
    Ciesielski, K.C., Miranda, P.A.A., Falcão, A.X., Udupa, J.K.: Joint graph cut and relative fuzzy connectedness image segmentation algorithm. Med. Image Anal. 17(8), 1046–1057 (2013)Google Scholar
  29. 29.
    Spina, T.V., de Miranda, P.A.V., Falcao, A.X.: Hybrid approaches for interactive image segmentation using the live markers paradigm. IEEE Trans. Image Process. 23(12), 5756–5769 (2014)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Kumar, S.N., Fred, A.L., Varghese, P.S.: Suspicious lesion segmentation on brain, mammograms and breast MR images using new optimized spatial feature based super-pixel fuzzy c-means clustering. J. Digit. Imaging (2018).  https://doi.org/10.1007/s10278-018-0149-9
  31. 31.
    Zhao, F., Liu, H., Fan, J., Chen, C.W., Lan, R., Li, N.: Intuitionistic fuzzy set approach to multi-objective evolutionary clustering with multiple spatial information for image segmentation. Neurocomputing 312(27), 296–309 (2018)Google Scholar
  32. 32.
    Khan, A., Ullah, J., Jaffar, M.A., Choi, T.S.: Color image segmentation: a novel spatial fuzzy genetic algorithm. Signal Image Video Process. 8(7), 1233–1243 (2014)Google Scholar
  33. 33.
    Khan, A., Jaffar, M.A., Shao, L.: A modified adaptive differential evolution algorithm for color image segmentation. Knowl. Inf. Syst. 43(3), 583–597 (2015)Google Scholar
  34. 34.
    Khan, A., Jaffar, M.A., Choi, T.S.: Som and fuzzy based color image segmentation. Multimed. Tools Appl. 64(2), 331–344 (2013)Google Scholar
  35. 35.
    Vazquez, E., Baldrich, R., Van De Weijer, J., Vanrell, M.: Describing reflectances for color segmentation robust to shadows, highlights, and textures. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 917–930 (2011)Google Scholar
  36. 36.
    Lee, S., Kim, J., Lim, H., Ahn, S.C.: Surface reflectance estimation and segmentation from single depth image of ToF camera. Signal Process. Image Commun. 47, 452–462 (2016)Google Scholar
  37. 37.
    Pérez-Carrasco, J.A., Acha-Piñero, B., Serrano-Gotarredona, C., Gevers, T.:. Reflectance-based segmentation using photometric and illumination invariants. In: International Conference Image Analysis and Recognition, pp. 179–186. Springer (2014)Google Scholar
  38. 38.
    Bruls, T., Maddern, W., Morye, A.A., Newman, P.: Mark yourself: road marking segmentation via weakly-supervised annotations from multimodal data. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1863–1870. IEEE (2018)Google Scholar
  39. 39.
    Garces, E., Reinhard, E.: Light-field surface color segmentation with an application to intrinsic decomposition. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1480–1488. IEEE (2018)Google Scholar
  40. 40.
    Qin, A.K., Clausi, D.A.: Multivariate image segmentation using semantic region growing with adaptive edge penalty. IEEE Trans. Image Process. 19(8), 2157–2170 (2010)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Plath, N., Toussaint, M., Nakajima, S.: Multi-class image segmentation using conditional random fields and global classification. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 817–824 (2009)Google Scholar
  42. 42.
    Bejar, H.H.C., Miranda, P.A.V.: Oriented relative fuzzy connectedness: theory, algorithms, and its applications in hybrid image segmentation methods. EURASIP J. Image Video Process. 2015(1), 21 (2015)Google Scholar
  43. 43.
    Kumar, M.J., Raj Kumar, G.V.S.: Hybrid image segmentation model based on active contour and graph cut with fuzzy entropy maximization. Int. J. Appl. Eng. Res. 12(23), 13623–13637 (2017)Google Scholar
  44. 44.
    Wang, F., Yan, W., Li, M., Zhang, P., Zhang, Q.: Adaptive hybrid conditional random field model for sar image segmentation. IEEE Trans. Geosci. Remote Sens. 55(1), 537–550 (2017)Google Scholar
  45. 45.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)Google Scholar
  46. 46.
    Nascimento, M.C.V., De Carvalho, A.C.P.L.F.: Spectral methods for graph clustering a survey. Eur. J. Oper. Res. 211(2), 221–231 (2011)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Rajkumar, G.V., Rao, K.S., Rao, P.S.: Image segmentation method based on finite doubly truncated bivariate gaussian mixture model with hierarchical clustering. Int. J. Comput. Sci. 8(4), 151–110 (2011)Google Scholar
  48. 48.
    Yanga, H.Y., Wanga, X.Y., Wanga, Q.Y., Zhanga, X.J.: LS-SVM based image segmentation using color and texture information. J. Vis. Commun. Image Represent. 23(7), 1095–1112 (2012)Google Scholar
  49. 49.
    Patel, J., Doshi, K.: A study of segmentation methods for detection of tumor in brain MRI. Adv. Electron. Electr. Eng. 4(3), 279–284 (2014)Google Scholar
  50. 50.
    Guo, Y., Xia, R., Şengür, A., Polat, K.: A novel image segmentation approach based on neutrosophic c-means clustering and indeterminacy filtering. Neural Comput. Appl. 28(10), 3009–3019 (2017)Google Scholar
  51. 51.
    Vendramin, L., Campello, R.J., Hruschka, E.R.: Relative clustering validity criteria: a comparative overview. Stat. Anal. Data Min. 3(4), 209–235 (2010)MathSciNetGoogle Scholar
  52. 52.
    Starczewski, A.: A new validity index for crisp clusters. Pattern Anal. Appl. 20(3), 687–700 (2017)MathSciNetGoogle Scholar
  53. 53.
    Shen, J., Du, Y., Wang, W., Li, X.: Lazy random walks for superpixel segmentation. IEEE Trans. Image Process. 23(4), 1451–1462 (2014)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Shen, J., Hao, X., Liang, Z., Liu, Y., Wang, W., Shao, L.: Real-time superpixel segmentation by dbscan clustering algorithm. IEEE Trans. Image Process. 25(12), 5933–5942 (2016)MathSciNetGoogle Scholar
  55. 55.
    Dong, X., Shen, J., Shao, L.: Hierarchical superpixel-to-pixel dense matching. IEEE Trans. Circuits Syst. Video Technol. 27(12), 2518–2526 (2017)Google Scholar
  56. 56.
    Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2097–2104 (2011)Google Scholar
  57. 57.
    Bezdek, J.C.: Cluster validity with fuzzy sets. J. Cybern. 3(3), 58–73 (1973)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Mascarilla, L., Berthier, M., Frélicot, C.: A k-order fuzzy or operator for pattern classification with k-order ambiguity rejection. Fuzzy Sets Syst. 159(15), 2011–2029 (2008)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Khan, A., Jaffar, M.A.: Genetic algorithm and self organizing map based fuzzy hybrid intelligent method for color image segmentation. Appl. Soft Comput. 32, 300–310 (2015)Google Scholar
  60. 60.
    Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.: Opposition-based differential evolution. IEEE Trans. Evol. Comput. 12(1), 64–79 (2008)Google Scholar
  61. 61.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceeding of the IEEE International Conference on Computer Vision, vol 2, pp. 416–423 (2001)Google Scholar
  62. 62.
    Yang, A.Y., Wright, J., Ma, Y., Sastry, S.S.: Unsupervised segmentation of natural images via lossy data compression. In: Computer Vision and Image Understanding, pp. 212–225 (2008)Google Scholar
  63. 63.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(02), 167–181 (2004)Google Scholar
  64. 64.
    Nock, R., Nielsen, F.: Statistical region merging. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1452–1458 (2004)Google Scholar
  65. 65.
    Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Salah, M.B., Mitiche, A., Ayed, I.B.: Multiregion image segmentation by parametric kernel graph cuts. IEEE Trans. Image Process. 20(2), 545–557 (2011)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Meila, M.: Comparing clusterings by the variation of information. In: Schölkopf, B., Warmuth, M.K. (eds.) Learning theory and kernel machines, Lecture Note in Computer Science, vol. 2777, pp. 173–187. Springer, Berlin, Heidelberg (2003)Google Scholar
  68. 68.
    Unnikrishnan, R., Hebert, M.: Measures of similarity. In: Proceedings of the IEEE Workshop on Computer Vision Applications, vol 1, pp. 394–401 (2005)Google Scholar
  69. 69.
    Wang, W., Shen, J.: Deep visual attention prediction. IEEE Trans. Image Process. 27(5), 2368–2378 (2018)MathSciNetGoogle Scholar
  70. 70.
    Wang, W., Shen, J., Ling, H.: A deep network solution for attention and aesthetics aware photo cropping. IEEE Trans. Pattern Anal. Mach. Intell. (2018).  https://doi.org/10.1109/TPAMI.2018.2840724

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Ahmad Khan
    • 1
    Email author
  • Zia ur Rehman
    • 1
  • Muhammad Arfan Jaffar
    • 2
  • Javid Ullah
    • 3
  • Ahmad Din
    • 1
  • Akbar Ali
    • 4
  • Niamat Ullah
    • 5
  1. 1.Department of Computer SciencesCOMSATS University Islamabad (CUI)AbbottabadPakistan
  2. 2.Al Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
  3. 3.National University of Computer and Emerging SciencesIslamabadPakistan
  4. 4.National Database and Registration Authority (NADRA) Regional Head Office (RHO)PeshawarPakistan
  5. 5.Department of Computer ScienceUniversity of BunerBunerPakistan

Personalised recommendations