Advertisement

A new 2D shape retrieval scheme based on phase congruency and histogram of oriented gradients

  • P. Govindaraj
  • M. S. Sudhakar
Original Paper
  • 30 Downloads

Abstract

Shape matching and retrieval is a challenging issue in computer vision owing to the complications in realizing highly accurate descriptors. Herein, a novel shape characterization, representation scheme is presented by blending phase congruency (PC) with histogram of oriented gradients (HOG), labelled as PC-HOG. Firstly, PC is applied on the shapes to obtain contour points that is then operated by HOG to formulate the feature vector. The resulting descriptor is evaluated on shape datasets like MPEG-7 CE shape-1 part B, TARI-1000 and Kimia’s 99. Relatively consistent Bull’s Eye Retrieval rate of 90% was achieved by the proposed descriptor across the diverse datasets. Also, noise analysis of the proposed descriptor in diverse datasets is performed to signify the scheme’s robustness against noise. Furthermore, the inherent nature of PC-HOG makes it to be invariant to different affine transformations.

Keywords

Bulls Eye Score Histogram of oriented gradients Phase congruency Shape retrieval 

Notes

References

  1. 1.
    Hu, D., Huang, W., Yang, J., Shang, L., Zhu, Z.: Shape matching and object recognition using common base triangle area. IET Comput. Vis. 9(5), 769–778 (2015)CrossRefGoogle Scholar
  2. 2.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognit. 37(1), 1–19 (2004)CrossRefGoogle Scholar
  3. 3.
    Zhou, Y., Liu, J.T., Bai, X.: Research and perspective on shape matching. Acta Autom. Sin. 38(6), 889–910 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Mehtre, B.M., Kankanhalli, M.S., Lee, W.F.: Shape measures for content based image retrieval: a comparison. Inf. Process. Manag. 33, 319–337 (1997)CrossRefGoogle Scholar
  5. 5.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)CrossRefGoogle Scholar
  6. 6.
    Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)CrossRefGoogle Scholar
  7. 7.
    Alajlan, N., Kamel, M.S., Freeman, G.H.: Geometry-based image retrieval in binary image databases. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1003–1013 (2008)CrossRefGoogle Scholar
  8. 8.
    Alajlan, N., El Rube, I., Kamel, M.S., Freeman, G.: Shape retrieval using triangle-area representation and dynamic space warping. Pattern Recognit. 40(7), 1911–1920 (2007)CrossRefGoogle Scholar
  9. 9.
    De Souza, G.B., Marana, A.N.: HTS and HTSn: new shape descriptors based on Hough transform statistics. Comput. Vis. Image Underst. 127, 43–56 (2014)CrossRefGoogle Scholar
  10. 10.
    Srestasathiern, P., Yilmaz, A.: Planar shape representation and matching under projective transformation. Comput. Vis. Image Underst. 115(11), 1525–1535 (2011)CrossRefGoogle Scholar
  11. 11.
    Kim, W.Y., Kim, Y.S.: A region-based shape descriptor using Zernike moments. Signal Proces. Image Commun. 16(1), 95–102 (2000)CrossRefGoogle Scholar
  12. 12.
    Goyal, A., Walia, E.: Variants of dense descriptors and Zernike moments as features for accurate shape-based image retrieval. Signal Image Video Process. 8, 1273–1289 (2014)CrossRefGoogle Scholar
  13. 13.
    Wang, B., Gao, Y.: Hierarchical string cuts: a translation, rotation, scale, and mirror invariant descriptor for fast shape retrieval. IEEE Trans. Image Process. 23(9), 4101–4111 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Matsuda, Y., Ogawa, M., Yano, M.: Shape retrieval with geometrically characterized contour partitions. IEEE Access 3, 1161–1178 (2015)CrossRefGoogle Scholar
  15. 15.
    Yang, J., Wang, H., Yuan, J., Li, Y., Liu, J.: Invariant multi-scale descriptor for shape representation, matching and retrieval. Comput. Vis. Image Underst. 145, 43–58 (2016)CrossRefGoogle Scholar
  16. 16.
    Kaothanthong, N., Chun, J., Tokuyama, T.: Distance interior ratio: a new shape signature for 2D shape retrieval. Pattern Recognit. Lett. 78, 14–21 (2016)CrossRefGoogle Scholar
  17. 17.
    Kovesi, P.: Edges are not just steps. In: Proceedings of the Fifth Asian Conference on Computer Vision, Melbourne. vol. 8, pp. 22–28 (2002)Google Scholar
  18. 18.
    Sudhakar, M.S., Bagan, K.B.: An effective biomedical image retrieval framework in a fuzzy feature space employing phase congruency and GeoSOM. Appl. Soft Comput. 22, 492–503 (2014)CrossRefGoogle Scholar
  19. 19.
    Sudhakar, M.S.: Fuzzy-linked phase congruency-based feature descriptors for image retrieval. Imaging Sci. J. 65, 14–29 (2017)CrossRefGoogle Scholar
  20. 20.
    Gudigar, A., Chokkadi, S., Raghavendra, U.: A review on automatic detection and recognition of traffic sign. Multimed. Tools Appl. 75(1), 333–364 (2016)CrossRefGoogle Scholar
  21. 21.
    Latecki, L. J., Lakamper, R., Eckhardt, T.: Shape descriptors for non-rigid shapes with a single closed contour. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, IEEE, pp. 424–429 (2000)Google Scholar
  22. 22.
    de Oliveira, A.B., da Silva, P.R., Barone, D.A.C.: A novel 2D shape signature method based on complex network spectrum. Pattern Recognit. Lett. 63, 43–49 (2015)CrossRefGoogle Scholar
  23. 23.
    Mei, Y.J., Tsai, C.C., Taur, J., Tao, C.W.: Enhancing shape retrieval accuracy using possibilistic fuzzy alignment with local features. Int. J. Fuzzy Syst. 15(3), 367 (2013)MathSciNetGoogle Scholar
  24. 24.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 550–571 (2004)CrossRefGoogle Scholar
  25. 25.
    Ion, A., Artner, N.M., Peyr, G., Kropatsch, W.G., Cohen, L.D.: Matching 2D and 3D articulated shapes using the eccentricity transform. Comput. Vis. Image Underst. 115(6), 817–834 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronics EngineeringVellore Institute of TechnologyVelloreIndia

Personalised recommendations