Advertisement

Image deconvolution using homomorphic technique

  • M. Y. Abbass
  • HyungWon Kim
  • Safey A. Abdelwahab
  • S. S. Haggag
  • El-Sayed M. El-Rabaie
  • Moawad I. Dessouky
  • Fathi E. Abd El-Samie
Original Paper
  • 26 Downloads

Abstract

Blind image deconvolution is a challenging issue in image processing. A solution to this problem is increasingly required in many applications. In this study, we develop a novel computational approach for solving the blind deconvolution problem by integrating the utilities of homomorphic domain and outlier handling methods in blurred images. Most of the existing methods for blind image deconvolution employ complex algorithms, and thus can incur excessive overhead in computing the blur kernel. In contrast, our work decomposes the blurred image into two main components using the homomorphic step. It is known that the homomorphic domain can be imposed on images by the logarithm operation that separates the image into the illumination and reflectance parts. The reflectance part contains the most prominent details of the image, while the illumination part contains mostly redundant information of the image. By using the reflectance part in the proposed blind deconvolution approach, we were able to achieve significant improvement in performance. The proposed approach outperforms the state-of-the-art methods. It is, therefore, an effective approach for blind image deconvolution with low complexity.

Keywords

Homomorphic Blind deconvolution Kernel estimation Motion blur Deblurring 

Notes

Acknowledgements

This work was supported by IITP grant through the Korean Government, development of wide area driving environment awareness and cooperative driving technology which are based on V2X wireless communication under grant R7117-19-0164, and it was also supported by the Center for Integrated Smart Sensors funded by the Ministry of Science of Korean Government, ICT and Future Planning as Global Frontier Project (CISS-2016). The corresponding authors are M. Y. Abbass and HyungWon Kim.

Supplementary material

11760_2018_1399_MOESM1_ESM.doc (15 mb)
Supplementary material 1 (DOC 15330 kb)

References

  1. 1.
    Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Process. Mag. 13(3), 43–64 (1996)CrossRefGoogle Scholar
  2. 2.
    Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Pub., Bristol (1998)CrossRefGoogle Scholar
  3. 3.
    Welk, M., Raudaschl, P., Schwarzbauer, T., et al.: Fast and robust linear motion deblurring. Signal Image Video Process. 9(5), 1221–1234 (2015).  https://doi.org/10.1007/s11760-013-0563-x CrossRefGoogle Scholar
  4. 4.
    Dong, J., Pan, J., Su, Z., Yang, M.: Blind image deblurring with outlier handling. IEEE Int. Conf. Comput. Vis. (2017).  https://doi.org/10.1109/ICCV.2017.271 CrossRefGoogle Scholar
  5. 5.
    Cho, S., Lee, S.: Fast motion deblurring. ACM TOG 28(5), 145 (2009)CrossRefGoogle Scholar
  6. 6.
    Campisi, P., Egiazarian, K.: Blind Image Deconvolution: Theory and Applications. CRC Press, Boca Raton (2007)CrossRefGoogle Scholar
  7. 7.
    Arif, A., Li, T., Cheng, C.H.: Blurred fingerprint image enhancement: algorithm analysis and performance evaluation. Signal Image Video Process. 12(4), 767–774 (2018).  https://doi.org/10.1007/s11760-017-1218-0 CrossRefGoogle Scholar
  8. 8.
    Chen, W.-G., Nandhakumar, N., Martin, W.N.: Image motion estimation from motion smear—a new computational model. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 412–425 (1996)CrossRefGoogle Scholar
  9. 9.
    Wang, W., Zheng, J., Zhou, H.: Segmenting, removing and ranking partial blur. Signal Image Video Process. 8(4), 647–655 (2014).  https://doi.org/10.1007/s11760-013-0573-8 CrossRefGoogle Scholar
  10. 10.
    Yitzhaky, Y., Mor, I., Lantzman, A., Kopeika, N.S.: Direct method for restoration of motion-blurred images. J. Opt. Soc. Am. A 15(6), 1512–1519 (1998)CrossRefGoogle Scholar
  11. 11.
    Yang, C.X., Shao, W.Z., Huang, L.L.: Boosting normalized sparsity regularization for blind image deconvolution. Signal Image Video Process. 11(4), 681–688 (2017).  https://doi.org/10.1007/s11760-016-1010-6 CrossRefGoogle Scholar
  12. 12.
    Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Trans. Graph. 25(3), 787–794 (2006)CrossRefGoogle Scholar
  13. 13.
    Welk, M.: A robust variational model for positive image deconvolution. Signal Image Video Process. 10(2), 369–378 (2016).  https://doi.org/10.1007/s11760-015-0750-z CrossRefGoogle Scholar
  14. 14.
    Lai, W.-S., Huang, J.-B., Hu, Z., Ahuja, N., Yang, M.-H.: A comparative study for single image blind deblurring. In: 2016 IEEE Conference (CVPR).  https://doi.org/10.1109/cvpr.2016.188
  15. 15.
    Rav-Acha, A., Peleg, S.: Two motion-blurred images are better than one. Pattern Recognit. Lett. 26, 311–317 (2005)CrossRefGoogle Scholar
  16. 16.
    Cho, S., Matsushita, Y., Lee, S.: Removing nonuniform motion blur from images. Proc. ICCV 2007(1), 8 (2007)Google Scholar
  17. 17.
    Dai, S., Wu, Y.: Motion from blur. In: Proceedings of the CVPR 2008, pp. 1–8 (2008)Google Scholar
  18. 18.
    Jia, J.: Single image motion deblurring using transparency. In: Proceedings of the CVPR, pp. 1–8 (2007)Google Scholar
  19. 19.
    Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image deblurring with blurred/noisy image pairs. ACM Trans. Graph. 26(3), Article No. 1 (2007)CrossRefGoogle Scholar
  20. 20.
    Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 27(3), Article No. 73 (2008)CrossRefGoogle Scholar
  21. 21.
    Cho, S., Wang, J., Lee, S.: Handling outliers in non-blind image deconvolution. In: ICCV, pp. 495–502 (2011)Google Scholar
  22. 22.
    Whyte, O., Sivic, J., Zisserman, A.: Deblurring shaken and partially saturated images. IJCV 110(2), 185–201 (2014)CrossRefGoogle Scholar
  23. 23.
    Elashry, I.F., Farag Allah, O.S., Abbas, A.M., El-Rabaie, S., El-Samie, F.E.A.: Homomorphic image encryption. J. Electron. Imaging 18, 033002 (2009)CrossRefGoogle Scholar
  24. 24.
    Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM TOG 26(3), 70 (2007)CrossRefGoogle Scholar
  25. 25.
    Abbass, M.Y., Kim, H.W.: EURASIP J. Image Video Process.  https://doi.org/10.1186/s13640-018-0276-8

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • M. Y. Abbass
    • 1
    • 2
  • HyungWon Kim
    • 1
  • Safey A. Abdelwahab
    • 2
  • S. S. Haggag
    • 3
  • El-Sayed M. El-Rabaie
    • 4
  • Moawad I. Dessouky
    • 4
  • Fathi E. Abd El-Samie
    • 4
  1. 1.Department of Electronic Engineering, College of Electrical and Computer EngineeringChungbuk National UniversityCheongju-CitySouth Korea
  2. 2.Engineering Department, Nuclear Research CenterAtomic Energy AuthorityCairoEgypt
  3. 3.Egypt Second Reactor, Nuclear Research CenterAtomic Energy AuthorityCairoEgypt
  4. 4.Department of Electronics and Electrical Communications, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations