Advertisement

Signal, Image and Video Processing

, Volume 13, Issue 3, pp 583–590 | Cite as

Supervised feature extraction method based on low-rank representation with preserving local pairwise constraints for hyperspectral images

  • Seyyed Ali Ahmadi
  • Nasser MehrshadEmail author
  • Seyyed Mohammad Razavi
Original Paper
  • 70 Downloads

Abstract

Feature extraction (FE) methods based on low-rank representation (LRR) have become important topics in hyperspectral images (HSIs) data analysis. In this paper, a supervised FE method for HSIs data based on LRR with the ability to preserve the local pairwise constraints information (LRLPC) is proposed. LRLPC does not change the data dimensionality and only employs a technique to enrich the original feature space (OFS) and to obtain enriched feature space, which results in features richer than OFS. To overcome the problem of LRR in lacking the local structure information (LSI) of data, a local discriminative regularization term is imposed on the fitness function of LRR to keep the LSI of data. For nonlinear structure of data, LRLPC is extended to kernel LRLPC (KLRLPC) using kernel trick. Utilization of existing information in the pairwise constraints is useful for limited labeled samples situations as a common problem in HSI data analysis. The obtained experimental results using two well-known HSI data sets confirm the effectiveness of LRLPC and KLRLPC for dimension reduction and classification of HSIs.

Keywords

Feature extraction Low-rank representation Dimension reduction Hyperspectral image Pairwise constraints 

References

  1. 1.
    Zhou, Y., Peng, J., Chen, C.L.P.: Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 53(2), 1082–1095 (2015).  https://doi.org/10.1109/TGRS.2014.2333539 CrossRefGoogle Scholar
  2. 2.
    Wang, M., Yu, J., Niu, L., Sun, W.: Feature extraction for hyperspectral images using low-rank representation with neighborhood preserving regularization. IEEE Geosci. Remote Sens. Lett. 14(6), 836–840 (2017).  https://doi.org/10.1109/LGRS.2017.2682849 CrossRefGoogle Scholar
  3. 3.
    Dornaika, F., Traboulsi, Y.E.: Learning flexible graph-based semi-supervised embedding. IEEE Trans. Cybern. 46(1), 206–218 (2016).  https://doi.org/10.1109/TCYB.2015.2399456 CrossRefGoogle Scholar
  4. 4.
    Liu, M., Zhang, D.: Pairwise constraint-guided sparse learning for feature selection. IEEE Trans. Cybern. 46(1), 298–310 (2016).  https://doi.org/10.1109/TCYB.2015.2401733 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Yang, S., Feng, Z., Ren, Y., Liu, H., Jiao, L.: Semi-supervised classification via kernel low-rank representation graph. Knowl. Based Syst. 69(1), 150–158 (2014).  https://doi.org/10.1016/j.knosys.2014.06.007 CrossRefGoogle Scholar
  6. 6.
    Yildiz, K.: Dimensionality reduction-based feature extraction and classification on fleece fabric images. SIViP 11(2), 317–323 (2017).  https://doi.org/10.1007/s11760-016-0939-9 CrossRefGoogle Scholar
  7. 7.
    Wei, Z., Chu, Y., Zhao, L.: An effective two-dimensional linear discriminant analysis with locality preserving approach for image recognition. SIViP 11(8), 1577–1584 (2017).  https://doi.org/10.1007/s11760-017-1122-7 CrossRefGoogle Scholar
  8. 8.
    Dong, Y., Du, B., Zhang, L., Zhang, L.: Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning. IEEE Trans. Geosci. Remote Sens. 55(5), 2509–2524 (2017).  https://doi.org/10.1109/TGRS.2016.2645703 CrossRefGoogle Scholar
  9. 9.
    Xue, S., Jin, X.: Robust classwise and projective low-rank representation for image classification. SIViP 12(1), 107–115 (2018).  https://doi.org/10.1007/s11760-017-1136-1 CrossRefGoogle Scholar
  10. 10.
    Wang, H., Celik, T.: Sparse representation-based hyperspectral image classification. SIViP 12(5), 1009–1017 (2018).  https://doi.org/10.1007/s11760-018-1249-1 CrossRefGoogle Scholar
  11. 11.
    Cheng, B., Yang, J., Yan, S., Fu, Y., Huang, T.S.: Learning with l1-graph for image analysis. Trans. Image Proc. 19(4), 858–866 (2010).  https://doi.org/10.1109/tip.2009.2038764 CrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013).  https://doi.org/10.1109/TPAMI.2012.88 CrossRefGoogle Scholar
  13. 13.
    Lu, X., Wang, Y., Yuan, Y.: Graph-regularized low-rank representation for destriping of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 51(7), 4009–4018 (2013).  https://doi.org/10.1109/TGRS.2012.2226730 CrossRefGoogle Scholar
  14. 14.
    Wang, X., Liu, F.: Weighted low-rank representation-based dimension reduction for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 14(11), 1938–1942 (2017).  https://doi.org/10.1109/LGRS.2017.2743018 CrossRefGoogle Scholar
  15. 15.
    Kuo, B.C., Li, C.H., Yang, J.M.: Kernel nonparametric weighted feature extraction for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 47(4), 1139–1155 (2009).  https://doi.org/10.1109/TGRS.2008.2008308 CrossRefGoogle Scholar
  16. 16.
    Fei, L., Xu, Y., Fang, X., Yang, J.: Low rank representation with adaptive distance penalty for semi-supervised subspace classification. Pattern Recognit. 67, 252–262 (2017).  https://doi.org/10.1016/j.patcog.2017.02.017 CrossRefGoogle Scholar
  17. 17.
    Chen, Y., Wang, Y., Li, M., He, G.: Augmented Lagrangian alternating direction method for low-rank minimization via non-convex approximation. SIViP 11(7), 1271–1278 (2017).  https://doi.org/10.1007/s11760-017-1084-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Seyyed Ali Ahmadi
    • 1
  • Nasser Mehrshad
    • 1
    Email author
  • Seyyed Mohammad Razavi
    • 1
  1. 1.Faculty of Electrical and Computer EngineeringUniversity of BirjandBirjandIran

Personalised recommendations