Advertisement

Deep feature extraction and its application for hailstorm detection in a large collection of radar images

  • 206 Accesses

Abstract

With the improvement of sensing and storing technologies, a large amount of weather data become available, and the data size will continue growing as radar imaging instruments continuously acquire data. In this work, we develop a deep convolutional neural network with a large collection of radar images as input to train and validate a classification model, and then we use the model to detect hailstorm events. This is interdisciplinary work between the disciplines of computer science and meteorology. We are primarily interested in what hailstorm features the network learns and how it learns as convolving into deeper iterations. The evaluation results show a high classification accuracy in comparison with existing hailstorm detection approaches. The proposed approach can also be used to detect other types of severe weather events with minimal efforts on variable or parameter changes.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    National centers for environmental information. https://www.ncei.noaa.gov (2017)

  2. 2.

    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.J., Harp, A., Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D.G., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.A., Vanhoucke, V., Vasudevan, V., Viégas, F.B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. CoRR. arXiv:1603.04467 (2016)

  3. 3.

    Auer Jr., A.H.: Hail recognition through the combined use of radar reflectivity and cloud-top temperatures. Mon. Weather Rev. 122(9), 2218–2221 (1994)

  4. 4.

    Bauer-Messmer, B., Waldvogel, A.: Satellite data based detection and prediction of hail. Atmos. Res. 43(3), 217–231 (1997)

  5. 5.

    Bracewell, R.N.: The Fourier Transform and its Applications. McGraw-Hill Series in Electrical Engineering, Networks and Systems, 2 rev. edn, p. c1986. McGraw-Hill, New York (1986)

  6. 6.

    Chen, M., Shi, X., Zhang, Y., Wu, D., Guizani, M.: Deep features learning for medical image analysis with convolutional autoencoder neural network. IEEE Trans. Big Data PP(99), 1–1 (2017)

  7. 7.

    Ferraro, R., Beauchamp, J., Cecil, D., Heymsfield, G.: A prototype hail detection algorithm and hail climatology developed with the advanced microwave sounding unit (AMSU). Atmos. Res. 163(Supplement C), 24–35 (2015)

  8. 8.

    Gerapetritis, H., Pelissier, J.M.: On the behavior of the critical success index. US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service (2004)

  9. 9.

    Gryshkevych, S.: Conviz. https://github.com/grishasergei/conviz (2016)

  10. 10.

    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

  11. 11.

    Herzmann, D., Arritt, R., Todey, D.: Iowa environmental mesonet. http://mesonet.agron.iastate.edu/request/coop/fe.phtml. Verified 27 Sept 2005. Iowa State University, Department of Agronomy, Ames, IA (2004)

  12. 12.

    Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision. IEEE, pp. 2146–2153 (2009)

  13. 13.

    Klein, B., Wolf, L., Afek, Y.: A dynamic convolutional layer for short range weather prediction. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4840–4848 (2015)

  14. 14.

    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc, Red Hook (2012)

  15. 15.

    Liu, Y., Racah, E., Prabhat, Correa, J., Khosrowshahi, A., Lavers, D., Kunkel, K., Wehner, M., Collins, W.D.: Application of deep convolutional neural networks for detecting extreme weather in climate datasets. CoRR. arXiv:1605.01156 (2016)

  16. 16.

    Marzban, C., Witt, A.: A bayesian neural network for severe-hail size prediction. Weather Forecast. 16(5), 600–610 (2001)

  17. 17.

    Merino, A., López, L., Sánchez, J., García-Ortega, E., Cattani, E., Levizzani, V.: Daytime identification of summer hailstorm cells from msg data. Nat. Hazards Earth Syst. Sci. 14(4), 1017–1033 (2014)

  18. 18.

    Mroz, K., Battaglia, A., Lang, T.J., Cecil, D.J., Tanelli, S., Tridon, F.: Hail-detection algorithm for the gpm core observatory satellite sensors. J. Appl. Meteorol. Climatol. 56(7), 1939–1957 (2017)

  19. 19.

    Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10. Omnipress, USA, pp. 807–814 (2010)

  20. 20.

    Ni, X., Liu, C., Cecil, D.J., Zhang, Q.: On the detection of hail using satellite passive microwave radiometers and precipitation radar. J. Appl. Meteorol. Climatol. 56(10), 2693–2709 (2017)

  21. 21.

    Oceanic, N., Administration, A.: Goes-R cloud top temperature (2016). https://vlab.ncep.noaa.gov/web/goes-r-end-user-mission-readiness-project/cloud-top-temperature

  22. 22.

    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

  23. 23.

    Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. CoRR. arXiv:1712.04621 (2017)

  24. 24.

    Poria, S., Cambria, E., Gelbukh, A.: Aspect extraction for opinion mining with a deep convolutional neural network. Knowl. Based Syst. 108(C), 42–49 (2016)

  25. 25.

    Pradhan, R., Aygun, R., Maskey, M., Ramachandran, R., Cecil, D.: Tropical cyclone intensity estimation using a deep convolutional neural network. IEEE Trans. Image Process. PP(99), 1–1 (2017)

  26. 26.

    Ravinder, A., Reddy, P.K., Prasad, N.: Detection of wavelengths for hail identification using satellite imagery of clouds. In: 2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN). IEEE, pp. 205–211 (2013)

  27. 27.

    Sainath, T.N., Mohamed, A-r., Kingsbury, B., Ramabhadran, B.: Deep convolutional neural networks for LVCSR. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8614–8618 (2013)

  28. 28.

    Schaefer, J.T.: The critical success index as an indicator of warning skill. Weather Forecast. 5(4), 570–575 (1990)

  29. 29.

    Scherer, D., Müller, A., Behnke, S.: Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition, pp. 92–101. Springer, Berlin, Heidelberg (2010)

  30. 30.

    Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3982–3991 (2015). https://doi.org/10.1109/CVPR.2015.7299024

  31. 31.

    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR. arXiv:1409.1556 (2014)

  32. 32.

    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

  33. 33.

    Žibert, M.I., Žibert, J.: Monitoring and automatic detection of the cold-ring patterns atop deep convective clouds using meteosat data. Atmos. Res. 123, 281–292 (2013)

Download references

Acknowledgements

This research work was supported by NASA Grant NNM11AA01A. We thank Dr. Sundar A. Christopher, Professor of Atmospheric Science at UAH, for his insightful suggestions for this work. We thank Ms. Melinda Pullman who helped us organize the data from National Center for Environmental Information Storm Events Database. We thank the support of Department of Computer Science at UAH and the support of NASA.

Author information

Correspondence to Chao Peng.

Additional information

This research was supported by NASA Grant NNM11AA01A.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gurung, I., Peng, C., Maskey, M. et al. Deep feature extraction and its application for hailstorm detection in a large collection of radar images. SIViP 13, 541–549 (2019). https://doi.org/10.1007/s11760-018-1380-z

Download citation

Keywords

  • Hailstorm detection
  • Convolutional neural network
  • Deep feature extraction