Highly accurate frequency estimation of brief duration signals in noise

Original Paper
  • 37 Downloads

Abstract

A highly accurate frequency estimation providing suppression of windowing effects, denoising performances and frequency resolutions in excess of Gabor–Heisenberg limit, is proposed for brief duration signals. It is shown that unbiased frequency estimation with vanishing frequency variances is achieved far below Cramer–Rao lower bound when signal-to-noise ratio reaches vicinity of threshold values. Observed performances provide novel and valuable perspectives for efficient and accurate frequency estimation for brief duration signals in noise.

Keywords

Multi-resolution Finite observation Frequency estimation Fourier analysis Amplitude resolution Frequency resolution Gabor–Heisenberg limit Cramer–Rao lower bound Brief duration signals Radar signal processing 

References

  1. 1.
    Hannan, E.J.: The estimation of frequency. J. Appl. Prob. 10(3), 510–519 (1973)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    McMahon, D.R.A., Barrett, R.F.: An efficient method for the estimation of the frequency of a single tone in noise from the phases of discrete fourier transforms. Signal Process. 11, 169–177 (1986)CrossRefGoogle Scholar
  3. 3.
    McMahon, D.R.A., Barrett, R.F.: Generalization of the method for the estimation of the frequencies of tones in noise from the phases of discrete fourier transforms. Signal Process. 12(4), 371–383 (1987)CrossRefGoogle Scholar
  4. 4.
    Barrett, R.F., McMahon, D.R.A.: ML Estimation of the fundamental frequency of a harmonic series. In: International Symposium of Signal Processing and its Applications (1987)Google Scholar
  5. 5.
    Rice, J.A., Rosenblatt, M.: On frequency estimation. Biometrika 75, 477–484 (1988)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kay, S.M.: A fast and accurate single frequency estimator. IEEE Trans. Acoust. Speech Signal Process. 37(12), 1987–1989 (1989)CrossRefGoogle Scholar
  7. 7.
    Clarkson, V.: Efficient single frequency estimators. In: International Symposium on Signal Processing and its Applications, Gold Coast (1992)Google Scholar
  8. 8.
    Richards, M.A.: Fundamentals of Radar Signal Processing. McGrawHill, New York (2005)Google Scholar
  9. 9.
    Candan, C.: A method for fine resolution frequency estimation from three DFT samples. IEEE Signal Process. Lett. 8(6), 351–354 (2011)CrossRefGoogle Scholar
  10. 10.
    Rife, D.C., Boorstyn, R.R.: Single tone parameter estimation from discrete-time observation. IEEE Trans. Inf. Theory 20(5), 591–598 (1974)CrossRefMATHGoogle Scholar
  11. 11.
    Rife, D.C., Boorstyn, R.R.: Multiple tone parameter estimation from discrete-time observation. Bell Syst. Tech. J. 55, 1389–1410 (1976)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Quin, B.G.: Estimating frequency by interpolation using Fourier coefficients. IEEE Trans. Signal Process. 42, 1264–1268 (1994)CrossRefGoogle Scholar
  13. 13.
    Quin, B.G.: Estimating frequency, amplitude and phase from DFT of a time series. IEEE Trans. Signal Process. 45, 814–817 (1997)CrossRefGoogle Scholar
  14. 14.
    Reisenfel, S., Aboutanios, E.: A new algorithm for the estimation of the frequency of a complex exponential in additive Gaussian noise. IEEE Commun. Lett. 7(11), 549–551 (2003)CrossRefGoogle Scholar
  15. 15.
    Reisenfel, S.: A highly accurate algorithm for the estimation of the frequency of a complex exponential in additive Gaussian noise. In: Proceedings 5th Australian Communication Theory Workshop (2007)Google Scholar
  16. 16.
    Jacobsen, E., Kootsookos, P.: Fast, accurate frequency estimators. IEEE Signal Process. Mag. 58(7), 3879–3883 (2010)CrossRefGoogle Scholar
  17. 17.
    Chan, K.W., So, H.C.: Accurate frequency estimation for real harmonic sinusoids. IEEE Signal Process. Lett. 11(7), 609–612 (2007)CrossRefGoogle Scholar
  18. 18.
    Yahya Bey, N.: Multi-resolution fourier analysis, part I : fundamentals. Int. J. Commun. Netw. Syst. Sci. 4(6), 364–371 (2011)Google Scholar
  19. 19.
    Yahya Bey, N.: Multi-resolution fourier analysis, part II : missing signal recovery and observation results. Int. J. Commun. Netw. Syst. Sci. 5(1), 28–36 (2012)Google Scholar
  20. 20.
    Yahya Bey, N.: Multi-resolution fourier analysis: extraction and missing signal recovery of short buried signals in noise. Signal Image Video Process 8(8), 1483–1495 (2014)CrossRefGoogle Scholar
  21. 21.
    Yahya Bey, N.: Multi-resolution fourier analysis: time-frequency resolution in excess of Gabor–Heisenberg limit. Signal Image Video Process. 8(4), 765–778 (2014)CrossRefGoogle Scholar
  22. 22.
    Yahya Bey, N.: Multi-resolution fourier analysis: achieved high resolutions with suppressed finite observation effects. Signal, Image and Video processing 8(8), 1483–1495 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculté des Sciences et TechniquesUniversité François RabelaisToursFrance

Personalised recommendations