Advertisement

Signal, Image and Video Processing

, Volume 12, Issue 3, pp 549–556 | Cite as

Copy-move tampering detection using affine transformation property preservation on clustered keypoints

  • V. T. Manu
  • B. M. Mehtre
Original Paper
  • 236 Downloads

Abstract

Recent advances in multimedia technologies have made imaging devices and image editing tools ubiquitous and affordable. Image editing done with malicious intent is called as image tampering or forgery. The most common forgery is the copy-move forgery which involves copying a part of an image and pasting it on some other part of the same image. There are many existing methods for such forgery detection, but most of them are sensitive to post-processing and do not detect multiple instances of forgeries in an image. In the proposed approach, affine transformation property preservation of clustered keypoints in the image is used, which includes the tests for collinearity and distance ratio preservation. Our method is also able to detect multiple copy-move forgeries within an image. The proposed method is tested against four image tampering detection datasets, and the results of our method are the best compared to the existing eight state-of-the-art methods in terms of accuracy.

Keywords

Copy-move forgery Segmentation Keypoint clustering Image tampering detection Affine transformation property Image forensics 

References

  1. 1.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels. Technical Report 149300, EPFL (2010)Google Scholar
  2. 2.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  3. 3.
    Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.: A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 6(3), 1099–1110 (2011)CrossRefGoogle Scholar
  4. 4.
    Ardizzone, E., Bruno, A., Mazzola, G.: Detecting multiple copies in tampered images. In: 2010 IEEE International Conference on Image Processing, pp. 2117–2120 (2010). doi: 10.1109/ICIP.2010.5652490
  5. 5.
    Ardizzone, E., Bruno, A., Mazzola, G.: Copy-move forgery detection by matching triangles of keypoints. IEEE Trans. Inf. Forensics Secur. 10(10), 2084–2094 (2015)CrossRefGoogle Scholar
  6. 6.
    Bayram, S., Sencar, H.T., Memon, N.: An efficient and robust method for detecting copy-move forgery. In: ICASSP 2009. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1053–1056. IEEE (2009)Google Scholar
  7. 7.
    Cao, Y., Gao, T., Fan, L., Yang, Q.: A robust detection algorithm for copy-move forgery in digital images. Forensic Sci. Int. 214(1), 33–43 (2012)CrossRefGoogle Scholar
  8. 8.
    Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854 (2012)CrossRefGoogle Scholar
  9. 9.
    Cozzolino, D., Poggi, G., Verdoliva, L.: Efficient dense-field copy-move forgery detection. IEEE Trans. Inf. Forensics Secur. 10(11), 2284–2297 (2015)CrossRefGoogle Scholar
  10. 10.
    Fridrich, A.J., Soukal, B.D., Luk, A.J.: Detection of copy-move forgery in digital images. In: Proceedings of Digital Forensic Research Workshop (2003)Google Scholar
  11. 11.
    Huang, H., Guo, W., Zhang, Y.: Detection of copy-move forgery in digital images using SIFT algorithm. In: Pacific-Asia Workshop on Computational Intelligence and Industrial Application PACIIA ’08, vol. 2, pp. 272–276 (2008). doi: 10.1109/PACIIA.2008.240
  12. 12.
    Juan, L., Gwun, O.: A comparison of SIFT, PCA-SIFT and SURF. Int. J. Image Process. (IJIP) 3(4), 143–152 (2009)Google Scholar
  13. 13.
    Li, L., Li, S., Zhu, H., Chu, S.C., Roddick, J.F., Pan, J.S.: An efficient scheme for detecting copy-move forged images by local binary patterns. J. Inf. Hiding Multimed. Signal Process. 4(1), 46–56 (2013)Google Scholar
  14. 14.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  15. 15.
    Mahmood, T., Nawaz, T., Ashraf, R., Shah, M., Khan, Z., Irtaza, A., Mehmood, Z.: A survey on block based copy move image forgery detection techniques. In: 2015 International Conference on Emerging Technologies (ICET), pp. 1–6 (2015). doi: 10.1109/ICET.2015.7389169
  16. 16.
    Manu, V.T., Mehtre, B.M.: Detection of copy-move forgery in images using segmentation and SURF. In: Thampi, S., Bandyopadhyay, S., Krishnan, S., Li, K.C., Mosin, S., Ma, M. (eds.) Advances in Signal Processing and Intelligent Recognition Systems, pp. 645–654. Springer, Berlin (2016)Google Scholar
  17. 17.
    Panchal, P., Panchal, S., Shah, S.: A comparison of SIFT and SURF. Int. J. Innov. Res. Comput. Commun. Eng. 1(2), 323–327 (2013)Google Scholar
  18. 18.
    Tralic, D., Zupancic, I., Grgic, S., Grgic, M.: Comofodnew database for copy-move forgery detection. In: 2013 55th International Symposium on ELMAR, pp. 49–54. IEEE (2013)Google Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Centre for Cyber SecurityInstitute for Development and Research in Banking Technology (IDRBT)HyderabadIndia
  2. 2.School of Computer Science and Information Sciences (SCIS)University of HyderabadHyderabadIndia

Personalised recommendations