Signal, Image and Video Processing

, Volume 12, Issue 3, pp 513–521 | Cite as

Coupling orientation diffusion with coherence-enhancing diffusion: a fingerprint case

  • Mohammad A. U. Khan
  • Tariq M. Khan
  • Donald G. Bailey
Original Paper


The enhancement of coherent flow-like structures is desired for many image processing tasks, such as segmentation and feature detection. This task can be accomplished in a natural way by adopting anisotropic diffusion filtering using a diffusion matrix adapted to the local structure. This method is referred to as coherence-enhancing diffusion (CED). The performance of CED can be analyzed by observing the evolution of the orientation field (OF) associated with an evolving diffusion matrix. It was revealed from a series of experiments that the final OF from a CED-enhanced image sometimes strays from its true underlying OF (marked by a human expert), degrading its performance. In this paper, a strategy is proposed which repeatedly cleans the OF associated with a diffusion matrix. Thus, for every iteration of CED, its OF is diffused separately until it converges and is then fed back to the CED process to move forward. This hypothesis is tested with the motive of getting an enhanced CED performance. The proposed scheme is validated using fingerprint data, and their numerical results are displayed.


Orientation diffusion Coherence-enhancing diffusion Fingerprint image enhancement Orientation field estimation 


  1. 1.
    Khan, T.M., Bailey, D.G., Khan, M.A.U., Kong, Y.: Efficient hardware implementation strategy for local normalization of fingerprint images. J. Real Time Image Process. (2016). doi: 10.1007/s11554-016-0625-8
  2. 2.
    Zahedi, M., Ghadi, O.R.: Combining Gabor filter and FFT for fingerprint enhancement based on a regional adaption method and automatic segmentation. Signal Image Video Process. 9(2), 267–275 (2015)CrossRefGoogle Scholar
  3. 3.
    Weickert, J.: A review of nonlinear diffusion filtering. Scale-Space Theory in Computer Vision 1252, 3–28 (1997)Google Scholar
  4. 4.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  5. 5.
    Alvarez, L., Lions, P.-L., Morel, J.-M.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(3), 845–866 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Khan, T.M., Bailey, D.G., Khan, M.A.U., Kong, Y.: Efficient hardware implementation for fingerprint image enhancement using anisotropic Gaussian filter. IEEE Trans. Image Process. 26(5), 2116–2126 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Khan, M.A.U., Khan, T.M., Kittaneh, O., Kong, Y.: Stopping criterion for anisotropic image diffusion. Optik Int J Light Electron Opt 127(1), 156–160 (2016)CrossRefGoogle Scholar
  8. 8.
    Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31, 111–127 (1999)CrossRefGoogle Scholar
  9. 9.
    Almansa, A., LIndeberg, T.: Fingerprint enhancement by shape adaption of scale-space operators with automatic scale selection. IEEE Trans. Image Process. 9, 2027–2041 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Perona, P.: Orientation diffusions. IEEE Trans. Image Process. 7, 457–467 (1998)CrossRefGoogle Scholar
  11. 11.
    Gottschlich, C., Schonlieb, C.-B.: Oriented diffusion filtering for enhancing low-quality fingerprint images. IET Biom. 1, 105–113 (2012)CrossRefGoogle Scholar
  12. 12.
    Weickert, J.: Coherence-enhancing diffusion of colour images. Image Vis. Comput. 17, 201–212 (1999)CrossRefGoogle Scholar
  13. 13.
    Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20, 777–789 (1998)CrossRefGoogle Scholar
  14. 14.
    Jain, A.K., Pankanti, S., Hong, L.: A multichannel approach to fingerprint classification. IEEE Trans. Pattern Anal. Mach. Intell. 21, 348–359 (1999)CrossRefGoogle Scholar
  15. 15.
    Sherlock, B.G., Monro, D.M., Millard, K.: Fingerprint enhancement by directional Fourier filtering. IEEE Proc. Vis. Image Signal Process. 141, 87–94 (1994)CrossRefGoogle Scholar
  16. 16.
    Wilson, C.L., Candela, G.T., Watson, C.I.: Neural network fingerprint classification. Artif. Neural Netw. 1, 203–228 (1994)Google Scholar
  17. 17.
    Truc, P.T.H., Khan, M.A.U., Lee, Y.K., Kim, T.S.: Vessel enhancement filter using directional filter bank. Comput. Vis. Image Underst. 113, 101–112 (2009)CrossRefGoogle Scholar
  18. 18.
    Allen, F.H., Johnson, O.: Automated conformational analysis from crystallographic data. 4. Statistical descriptors for a distribution of torsion angles. Acta Crystallogr. B47, 62–67 (1991)CrossRefGoogle Scholar
  19. 19.
    Yang, Y., Zulong, Z., Lin, K., Han, F.: “A new method of singular points accurate localization for fingerprint,” Physics Procedia, 2012 International Conference on Medical Physics and Biomedical Engineering (ICMPBE2012), vol. 33, pp. 67 – 74 (2012)Google Scholar
  20. 20.
    Khan, T.M., Khan, M.A.U., Kong, Y.: Fingerprint image enhancement using multi-scale DDFB based diffusion filters and modified Hong filters. Optik Int. J. Light Electron Opt. 25, 4206–4214 (2014)CrossRefGoogle Scholar
  21. 21.
    Khan, M.A.U., Khan, T.M., Halabi, W.A., Shahid, H., Kong, Y.: Coherence enhancement diffusion using robust orientation estimation. IJMA 6, 23–34 (2014)CrossRefGoogle Scholar
  22. 22.
    Julasayvake, A., Choomchuay, S.: An algorithm for fingerprint core point detection. In: International Symposium on Signal Processing and its Applications IAAPA-2007 (2007)Google Scholar
  23. 23.
    Abraham, J., Kwan, P., Gao, J.: Fingerprint matching using a hybrid shape and orientation descriptor. In: Yang, J. (ed.) State of the art in biometrics, pp. 25–56. InTech (2011). doi: 10.5772/19105
  24. 24.
  25. 25.
    Khan, M.A.U., Khan, T.M.: Calibrating second-moment matrix for better shape adaptation with bias term from directional filter bank. Signal Image Video Process. (2017). doi: 10.1007/s11760-017-1107-6
  26. 26.
    Khan, T.M., Khan, M.A.U., Kong, Y., Kittaneh, O.: Stopping criterion for linear anisotropic image diffusion: a fingerprint image enhancement case. EURASIP J. Image Video Process. 2016(1), 6 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.Department of EngineeringMacquarie UniversitySydneyAustralia
  3. 3.School of Engineering and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations