Advertisement

Signal, Image and Video Processing

, Volume 11, Issue 7, pp 1181–1188 | Cite as

Hierarchical detection of persons in groups

  • Álvaro García-Martín
  • Ricardo Sánchez-Matilla
  • José M. Martínez
Original Paper

Abstract

In this paper, we address one of the most typical problems of person detection: scenarios with the presence of groups of persons. In this kind of scenarios, traditional person detectors have difficulties as they have to deal with several simultaneous occlusions. In order to try to solve this problem, we propose the use of two different hierarchies. The first one consists of a hierarchy of persons, i.e., the use of the detection of different persons belonging to a group in order to refine the individual’s detections. The second one consists of a hierarchy of parts, i.e., the use of different combinations of body parts in order to refine the final detections. Experimental results over several video sequences show that the proposed hierarchies significantly improve the results with respect to different approaches from the state of the art.

Keywords

Person detection Hierarchy of persons in groups (HPG) Hierarchy of body parts (HBP) Hierarchical detector in groups (HDG) 

Notes

Acknowledgements

This work was partially supported by the Spanish Government (HAVideo, TEC2014-53176-R).

References

  1. 1.
    Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-detection-by-tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  2. 2.
    Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)CrossRefGoogle Scholar
  3. 3.
    Felzenszwalb, P., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  4. 4.
    Ferryman, J., Shahrokni, A.: Pets: dataset and challenge. In: Proceeding of PETS-Winter (2009)Google Scholar
  5. 5.
    Garcia-Martin, A., Cavallaro, A., Martinez, J.M.: People-background segmentation with unequal error cost. In: Proceeding of ICIP, pp. 157–160 (2012)Google Scholar
  6. 6.
    Garcia-Martin, A., Evangelio, R.H., Sikora, T.: A multi-configuration part-based person detector. In: International Conference on Signal Processing and Multimedia Applications (SIGMAP). IEEE, pp. 321–328 (2014)Google Scholar
  7. 7.
    Hu, W., Tan, T., Wang, L., Maybank, S.: A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man. Cybern. C (Appl. Rev.) 34(3), 334–352 (2004)CrossRefGoogle Scholar
  8. 8.
    Idrees, H., Soomro, K., Shah, M.: Detecting humans in dense crowds using locally-consistent scale prior and global occlusion reasoning. IEEE Trans. Pattern Anal. Mach. Intell. 37(10), 1986–1998 (2015)CrossRefGoogle Scholar
  9. 9.
    Lee, B., Erdenee, E., Jin, S., Rhee, P.K.: Efficient object detection using convolutional neural network-based hierarchical feature modeling. Signal Image Video Process. 10(8), 1503–1510 (2016)CrossRefGoogle Scholar
  10. 10.
    Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. IEEE Comput. Vis. Pattern Recognit. 1, 878–885 (2005)Google Scholar
  11. 11.
    Li, B., Song, X., Wu, T., Hu, W., Pei, M.: Coupling-and-decoupling: a hierarchical model for occlusion-free object detection. Pattern Recognit. 47(10), 3254–3264 (2014)Google Scholar
  12. 12.
    Liu, Q., Ma, X., Ou, W., Zhou, Q.: Visual object tracking with online sample selection via lasso regularization. Signal Image Video Process. (2017). doi: 10.1007/s11760-016-1035-x
  13. 13.
    Milan, A., Roth, S., Schindler, K.: Continuous energy minimization for multitarget tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 58–72 (2014)CrossRefGoogle Scholar
  14. 14.
    Ouyang, W., Zeng, X., Wang, X.: Single-pedestrian detection aided by two-pedestrian detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1875–1889 (2015)CrossRefGoogle Scholar
  15. 15.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Proceedings of NIPS (2015)Google Scholar
  16. 16.
    Sadeghi, M., Farhadi, A.: Recognition using visual phrases. In: Proceedings of CVPR, pp. 1745–1752 (2011)Google Scholar
  17. 17.
    Sadovnik, A., Chen, T.: Hierarchical object groups for scene classification. In: Proceedings of ICIP, pp. 1881–1884 (2012)Google Scholar
  18. 18.
    Tang, S., Andriluka, M., Schiele, B.: Detection and tracking of occluded people. Int. J. Comput. Vis. 110(1), 58–69 (2013)Google Scholar
  19. 19.
    Vázquez, C., Ghazal, M., Amer, A.: Feature-based detection and correction of occlusions and split of video objects. Signal Image Video Process. 3(1), 13–25 (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Álvaro García-Martín
    • 1
  • Ricardo Sánchez-Matilla
    • 1
  • José M. Martínez
    • 1
  1. 1.Universidad Autonoma de MadridMadridSpain

Personalised recommendations