Advertisement

Signal, Image and Video Processing

, Volume 11, Issue 6, pp 1123–1130 | Cite as

Human gait recognition based on Haralick features

  • Ait O. Lishani
  • Larbi BoubchirEmail author
  • Emad Khalifa
  • Ahmed Bouridane
Original Paper

Abstract

This paper proposes a supervised feature extraction approach that is capable of selecting distinctive features for the recognition of human gait under clothing and carrying conditions, thus improving the recognition performances. The principle of the suggested approach is based on the Haralick features extracted from gait energy image (GEI). These features are extracted locally by dividing vertically or horizontally the GEI locally into two or three equal regions of interest, respectively. RELIEF feature selection algorithm is then employed on the extracted features in order to select only the most relevant features with a minimum redundancy. The proposed method is evaluated on CASIA gait database (Dataset B) under variations of clothing and carrying conditions for different viewing angles, and the experimental results using k-NN classifier have yielded attractive results of up to 80% in terms of highest identification rate at rank-1 when compared to existing and similar state-of-the-art methods.

Keywords

Human gait recognition Identification Gait energy image Feature extraction Haralick features Feature selection Classification 

References

  1. 1.
    Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circ. Syst. Video Technol. 14(1), 4–20 (2004)CrossRefGoogle Scholar
  2. 2.
    Jain, A.K., Flynn, P., Ross, A.A.: Handbook of Biometrics. Springer Ed, Berlin (2007)Google Scholar
  3. 3.
    Tao, D., Li, X., Wu, X., Maybank, S.J.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)CrossRefGoogle Scholar
  4. 4.
    Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)CrossRefGoogle Scholar
  5. 5.
    Lu, H., Venetsanopoulos, P.: A layered deformable model for gait analysis. In: Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 249–254 (2006)Google Scholar
  6. 6.
    Little, J., Boyd, J.: Describing motion for recognition. In: International Symposium on Computer Vision, pp. 235–240 (1995)Google Scholar
  7. 7.
    Niyogi, S., Adelson, E.: Analyzing and recognizing walking figures in XYT. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 469–474 (1994)Google Scholar
  8. 8.
    Whytock, T., Belyaev, A., Robertson, N.: Dynamic distance-based shape features for gait recognition. J. Math. Imaging Vis. 50(3), 314–326 (2014)CrossRefzbMATHGoogle Scholar
  9. 9.
    Zeng, W., Wang, C., Yang, F.: Silhouette-based gait recognition via deterministic learning. Pattern Recognit. 47(11), 3568–3584 (2014)CrossRefGoogle Scholar
  10. 10.
    Little, J., Boyd, J.: Recognizing people by their gait: the shape of motion. J. Comput. Vis. Res. 1(2), 1–32 (1998)Google Scholar
  11. 11.
    Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)CrossRefGoogle Scholar
  12. 12.
    Ng, H., Tong, H.-L., Tan, W.-H., Yap, T.T., Chong, P., Abdullah, J.: Human Identification based on extracted gait features. Int. J. New Comput. Archit. Appl. 1(2), 358–370 (2011)Google Scholar
  13. 13.
    Bashir, K., Xiang, T., Gong, S.: Gait Representation Using Flow Fields, British Machine Vision Association (BMVC), pp. 1–11(2009)Google Scholar
  14. 14.
    Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recognit. Lett. 31(13), 2052–2060 (2010)CrossRefGoogle Scholar
  15. 15.
    CASIA Gait Database, The Center for Biometrics and Security Research (CBSR), http://www.cbsr.ia.ac.cn/english/index.asp
  16. 16.
    Mohan Kumar, H.P., Nagendraswamy, H.S.: LBP for gait recognition: a symbolic approach based on GEI plus RBL of GEI. In: International Conference on Electronics and Communication Systems (ICECS’2014), pp. 1–5 (2014)Google Scholar
  17. 17.
    Yam, C., Nixon, M., Carter, J.: Automated person recognition by walking and running via model-based approaches. Pattern Recogni. 37(5), 1057–1072 (2004)CrossRefGoogle Scholar
  18. 18.
    Boulgouris, N.V., Chi, Z.X.: Gait recognition using radon transform and linear discriminant analysis. IEEE Trans. Image Process. 16(2), 731–740 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Dupuis, Y., Savatier, X., Vasseur, P.: Feature subset selection applied to model-free gait recognition. Image Vis. Comput. 31(8), 580–591 (2013)CrossRefGoogle Scholar
  20. 20.
    Kira, K., Rendell, L.: The feature selection problem: traditional methods and a new algorithm, AAAI-92 Proceedings., pp. 36–39 (1992)Google Scholar
  21. 21.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)CrossRefGoogle Scholar
  22. 22.
    Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: IEEE 18th International Conference on Pattern Recognition (ICPR), pp. 441–444 (2006)Google Scholar
  23. 23.
    Hu, M., Wang, Y., Zhang, Z., Zhang, D., Little, J.J.: Incremental learning for video-based gait recognition with LBP flow. IEEE Trans. Cybern. 43(1), 77–89 (2013)CrossRefGoogle Scholar
  24. 24.
    Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanid gait challenge problem: data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 162–177 (2005)CrossRefGoogle Scholar
  25. 25.
    Guan, Y., Li, C.-T., Roli, F.: On reducing the effect of covariate factors in gait recognition: a classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 37(7), 1521–1528 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.CESS Group, Department of Computer Science and Digital TechnologiesNorthumbria UniversityNewcastle upon TyneUK
  2. 2.LIASD Research Lab., Department of Computer ScienceUniversity of Paris 8Saint-denis CedexFrance

Personalised recommendations