Advertisement

Signal, Image and Video Processing

, Volume 11, Issue 6, pp 1065–1072 | Cite as

Compensatory fuzzy mathematical morphology

  • Agustina BouchetEmail author
  • Juan I. Pastore
  • Marcel Brun
  • Virginia L. Ballarin
Original Paper
  • 152 Downloads

Abstract

In this paper, we propose the use of compensatory fuzzy logic to extend mathematical morphology (MM) operators to gray-level images, in a similar way than fuzzy logic is used, naming it compensatory fuzzy mathematical morphology (CFMM). We study the compliance with the four principles of quantification and analyze the robustness of these operators by comparing them with Classic MM and fuzzy mathematical morphology (FMM), in the context of the processing of magnetic resonance images under noisy conditions. We observed that operators of CFMM are more robust, relative to noise, than MM and FMM ones, for the type of images used. As an additional result of this work, we developed a library for CFMM operators, plus an additional graphical user interface, which brings together the new operators with a wide range of operators of FMM and Classic MM.

Keywords

Mathematical morphology Fuzzy mathematical morphology Compensatory fuzzy logic Segmentation Medical images 

References

  1. 1.
    Aptoula, E., Lefévre, S.: \(\alpha \)-trimmed lexicographical extrema for pseudo-morphological image analysis. J. Visual Commun. Image Represent. 19(3), 165–174 (2008)CrossRefGoogle Scholar
  2. 2.
    Bloch, I., Maître, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recognit. 28, 1341–1387 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bloch, I.: Fuzzy sets for image processing and understanding. Fuzzy Sets Syst. 281(C), 280–291 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bouchet, A., Pastore, J., Brun, M., Ballarin, V.: Lógica Difusa Compensatoria basada en la media aritmética y su aplicación en la Morfología Matemática Difusa, 4to Torneo Regional de Inteligencia Computacional, IEEE (2010)Google Scholar
  5. 5.
    Bouchet, A., Pastore, J., Andrade, R.E., Brun, M., Ballarin, V.: Compensatory logic applied to digital image processing. In: Andrade, R.E., Gómez, J., Valdéz, A. (eds.) Towards a Trans-Disciplinary Technology of Business and Organizational Intelligence: Gathering Knowledge Discovery, Knowledge Management and Decision, pp. 226–239. Shaker Verlag, Aachen, University of Oldenburg, Alemania (2011)Google Scholar
  6. 6.
    Bouchet, A., Pastore, J.I., Espín Andrade, R., Brun, M., Ballarin, V.: Arithmetic mean based compensatory fuzzy logic. Int. J. Comput. Intell. Appl. 10, 231–243 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bouchet, A., Pastore, J., Espín Andrade, R., Brun, M., Ballarin, V.: Morfología Matemática Compensatoria aplicada a la segmentación de imágenes médicas, Tercer Taller Internacional de Descubrimiento de Conocimiento, Gestin del Conocimiento y Toma de Decisiones, Universidad de Cantabria y Universidad de Oldenburgo, España (2011)Google Scholar
  8. 8.
    Bouchet, A., Comas, D., Pastore, J., Brun, M., Ballarin, V.: Fuzzy mathematical morphology toolbox and graphical interface. IEEE Latin Am. Trans. 11, 1090–1096 (2013)CrossRefGoogle Scholar
  9. 9.
    Bouchet, A., Meschino, G., Brun, M., Espín Andrade, R., Ballarin, V.: Linguistic interpretation of mathematical morphology. In: Leyva López, J.C., Espin Andrade, R.A., Bello Pérez, R., Álvarez Carrillo, P.A. (eds.) Advances in Intelligent Systems Research, vol. 51, pp. 8–16. Atlantis Press, New York (2013)Google Scholar
  10. 10.
    Bouchet, A., Pastore, J., Brun, M., Ballarin, V.: Segmentation of lateral ventricles in magnetic resonance images. In: Braidot, A., Hadad, A. (eds.) IFMBE Proceedings, vol. 49, pp. 457–460. Springer, Berlin (2015)Google Scholar
  11. 11.
    Burillo López, P., Frago, N.P., Fuentes-Gonzlez, R.: Generation of fuzzy mathematical morphologies. Mathw. Soft Comput. 8, 31–46 (2001)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Coliban, R., Ivanovici, M., Szekely, I.: Fast probabilistic pseudo-morphology for noise reduction in color images. Proced. Technol. 22, 870–877 (2016)CrossRefGoogle Scholar
  13. 13.
    De Baets, B., Kerre, E., Gupta, M.: The fundamentals of fuzzy mathematical morphology. Part 1: basic concepts. Int. J. Gen. Syst. 23, 155–171 (1995)CrossRefzbMATHGoogle Scholar
  14. 14.
    De Baets, B., Kerre, E., Gupta, M.: The fundamentals of fuzzy mathematical morphology. Part 2: idempotence, convexity and decomposition. Int. J. Gen. Syst. 23, 307–322 (1995)CrossRefzbMATHGoogle Scholar
  15. 15.
    Di Gesu, V., Maccarone, M.C., Tripiciano, M.: Mathematical morphology based on fuzzy operators. In: Lowen, R., Roubens, M. (eds.) Fuzzy Logic, pp. 477–486. Kluwer Academic Publishers, Berlin (1993)CrossRefGoogle Scholar
  16. 16.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press Inc, New York (1980)zbMATHGoogle Scholar
  17. 17.
    Espín Andrade, R., Fernández González, E.: La Lógica Difusa Compensatoria: Una Plataforma para el Razonamiento y la Representacin del Conocimiento en un Ambiente de Decisión Multicriterio, Análisis Multicriterio para la Toma de Decisiones: Métodos y Aplicaciones. Coedición: editorial Plaza y Valdes / Editorial Universidad de Occidente (2009)Google Scholar
  18. 18.
    Espín Andrade, R., González Caballero, E., Pedrycz, W., Fernández González, E.R.: Archimedean-compensatory fuzzy logic systems. Int. J. Comput. Intell. Syst. 8(2), 54–62 (2015)CrossRefGoogle Scholar
  19. 19.
    Kerre, E.E., Nachtegael, M.: Fuzzy Techniques in Image Processing. Physica, New York (2000)CrossRefzbMATHGoogle Scholar
  20. 20.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Position paper I: basic analytical and algebraic properties. Fuzzy Sets Syst. 143, 5–26 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Menger, K.: Statistical metrics. Proc. Natl Acad. Sci. (PNAS) 28(12), 535–537 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nachtegael, M., Kerre, E.E.: Connections between binary, gray-scale and fuzzy mathematical morphologies. Fuzzy Sets Syst. 124(1), 73–85 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nisenbaum, M., Bouchet, A., Guzmán, M., González, J.F., Sendra, G.H., Pastore, J., Trivi, M., Murialdo, S.E.: Dynamic laser speckle and fuzzy mathematical morphology applied to studies of chemotaxis towards hydrocarbons. Int. J. Environ. Health 7, 58–69 (2014)CrossRefGoogle Scholar
  24. 24.
    Omar, S.A., Bouchet, A., Pellice, S., Ballarin, V., Ceré, S.M., Ballarre, J., Pastore, J.: Optimization of new spray technique for hybrid sol-gel coatings: preliminary deposition study. In: UNER (Ed.) VI Latin American Conference in Biomedical Engineering, Paraná, Entre Ríos, pp. 653–656 (2014)Google Scholar
  25. 25.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)zbMATHGoogle Scholar
  26. 26.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. 2. Academic Press, London (1988)Google Scholar
  27. 27.
    Zadeh, L.A.: From computing with numbers to computing with words from manipulation of measurements to manipulation of perceptions. IEEE Trans. Circuits Syst. 45, 105–119 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Agustina Bouchet
    • 1
    Email author
  • Juan I. Pastore
    • 1
  • Marcel Brun
    • 1
  • Virginia L. Ballarin
    • 1
  1. 1.ICYTE, CONICET - UNMDP, Universidad Nacional de Mar del PlataMar del PlataArgentina

Personalised recommendations