Signal, Image and Video Processing

, Volume 11, Issue 4, pp 635–642 | Cite as

Compressive sensing based high-resolution passive bistatic radar

  • Muhammad Abdul HadiEmail author
  • Muhammad Naveed Tabassum
  • Saleh Alshebeili
Original Paper


Passive bistatic radar (PBR) systems using different communication signals can only offer low-resolution target detection due to their inherent low bandwidth. In this paper, compressive sensing (CS) is applied to multichannel FM and GSM PBR to achieve improved range-Doppler resolutions and avoid some limitations of classical multiband PBR processing. In CS context, block-structured time-domain dictionary which is formed from multichannel signals suffers from coherence when fine range resolution is employed. To overcome such a pitfall, this work first transforms the dictionary to spectral domain where only the most important spectral components are retained. Principle component analysis followed by a whitening method are then applied to this spectrally transformed data in order to reduce the dimensionality of problem, thereby reducing the dictionary size and most importantly fulfilling the required condition of dictionary incoherence for better CS-based recovery. Two different block-structured dictionary formations are tested. The performance of the recovery of spatially close targets, in both FM and GSM PBR setups, are reported.


Compressive sensing Radar Convex optimization Enhanced PCA Sparsity 



The authors would like to acknowledge the support of KACST-TIC in RF and Photonics for the e-Society (RFTONICS), Riyadh, Saudi Arabia.


  1. 1.
    Tabassum, M.N., Hadi, M., Alshebeili, S.: CS based processing for high resolution GSM passive bistatic radar. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), March 2016, pp. 2229–2233Google Scholar
  2. 2.
    Griffiths, H., Baker, C.: Passive coherent location radar systems. Part 1: performance prediction. In: IEE Proceedings Radar, Sonar and Navigation, vol. 152, no. 3. pp. 153–159. IET (2005)Google Scholar
  3. 3.
    Zemmari, R., Nickel, U., Wirth, W.-D.: GSM passive radar for medium range surveillance. In: European Radar Conference EuRAD, Sept. 2009, pp. 49–52 (2009)Google Scholar
  4. 4.
    Kuschel, H., Heckenbach, J., Muller, S., Appel, R.: On the potentials of passive, multistatic, low frequency radars to counter stealth and detect low flying targets. In: 2008 IEEE Radar Conference (2008)Google Scholar
  5. 5.
    Howland, P.E., Maksimiuk, D., Reitsma, G.: FM radio based bistatic radar. In: IEE Proceedings Radar, Sonar and Navigation, vol. 152, no. 3, pp. 107–115. IET (2005)Google Scholar
  6. 6.
    Olsen, K.E., Woodbridge, K.: International Waveform Diversity and Design Conference (WDD). IEEE 2010, pp. 142–149 (2010)Google Scholar
  7. 7.
    Conti, M., Berizzi, F., Petri, D., Capria, A., Martorella, M.: High range resolution DVB-T passive radar. In: European Radar Conference (EuRAD). IEEE 2010, pp. 109–112 (2010)Google Scholar
  8. 8.
    Taşdelen, A.S., Köymen, H.: Range resolution improvement in passive coherent location radar systems using multiple FM radio channels. In: The IET Forum on Waveform Diversity and Design in Communications, Radar and Sonar. IET, pp. 23–31 (2006)Google Scholar
  9. 9.
    Arslan, M.T., Tofighi, M., Sevimli, R.A., Cetin, A.E.: Range resolution improvement in passive bistatic radars using nested fm channels and least squares approach. In: SPIE Defense+ Security, p. 947414. International Society for Optics and Photonics (2015)Google Scholar
  10. 10.
    Bongioanni, C., Colone, F., Lombardo, P., Performance analysis of a multi-frequency fm based passive bistatic radar. In: IEEE Radar Conference: RADAR’08. IEEE 2008, pp. 1–6 (2008)Google Scholar
  11. 11.
    Olsen, K.E., Woodbridge, K.: Performance of a multiband passive bistatic radar processing scheme—Part I. IEEE Trans. Aerosp. Electron. Syst. 27(10), 16–25 (2012)CrossRefGoogle Scholar
  12. 12.
    Olsen, K.E., Woodbridge, K.: Performance of a multiband passive bistatic radar processing scheme—Part II. IEEE Trans. Aerosp. Electron. Syst. Mag. 27(11), 4–14 (2012)CrossRefGoogle Scholar
  13. 13.
    Candes, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)Google Scholar
  14. 14.
    Herman, M.A., Strohmer, T.: High-resolution radar via compressed sensing. IEEE Trans. Signal Process. 57(6), 2275–2284 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Berger, C.R., Zhou, S., Willett, P.: Signal extraction using compressed sensing for passive radar with OFDM signals. In: 2008 11th International Conference on Information Fusion. IEEE, pp. 1–6 (2008)Google Scholar
  16. 16.
    Maechler, P., Felber, N., Kaeslin, H.: Compressive sensing for wifi-based passive bistatic radar. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO). IEEE, pp. 1444–1448 (2012)Google Scholar
  17. 17.
    Sevimli, R.A., Tofighi, M., Cetin, A.E.: Range-Doppler radar target detection using denoising within the compressive sensing framework. In: 22nd IEEE European Signal Processing Conference (EUSIPCO). IEEE, pp. 1950–1954 (2014)Google Scholar
  18. 18.
    Misiurewicz, J., Kulpa, J.: Compressed sensing algorithms performance with superresolution in a passive radar. In: 14th International Radar Symposium (IRS) (2013)Google Scholar
  19. 19.
    Ender, J.H.: A compressive sensing approach to the fusion of PCL sensors. In: Proceedings of the 21st European Signal Processing Conference (EUSIPCO). IEEE, pp. 1–5 (2013)Google Scholar
  20. 20.
    Subedi, S., Zhang, Y.D., Amin, M.G., Himed, B.: Motion parameter estimation of multiple targets in multistatic passive radar through sparse signal recovery. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 1454–1457 (2014)Google Scholar
  21. 21.
    Davenport, M.A., Duarte, M.F., Eldar, Y.C., Kutyniok, G.: Introduction to compressed sensing. Preprint 93(1), 2 (2011)Google Scholar
  22. 22.
    Willis, N.J.: Bistatic Radar. SciTech Publishing, Raleigh (2005)Google Scholar
  23. 23.
    Elhamifar, E., Vidal, R.: Block-sparse recovery via convex optimization. IEEE Trans. Signal Process. 60(8), 4094–4107 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hyvärinen, A., Karhunen, J., Oja, E.: Principal component analysis and whitening. In: Independent Component Analysis, pp. 125–145. Wiley, New York (2004)Google Scholar
  25. 25.
    Jolliffe, I.: Principal component analysis. Springer Series in Statistics, vol. 1. Springer, Berlin (1986)Google Scholar
  26. 26.
    Li, S., Li, Q., Li, G., He, X., Chang, L.: Simultaneous sensing matrix and sparsifying dictionary optimization for block-sparse compressive sensing. In: 10th IEEE International Conference on Mobile Ad-Hoc and Sensor Systems, pp. 597–602 (2013)Google Scholar
  27. 27.
    Zelnik-Manor, L., Rosenblum, K., Eldar, Y.: Sensing matrix optimization for block-sparse decoding. IEEE Trans. Signal Process. 59(9), 4300–4312 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Cardinali, R., Colone, F., Lombardo, P., Crognale, O., Cosmi, A., Lauri, A.: Multipath cancellation on reference antenna for passive radar which exploits FM transmission. In: IET International Conference on Radar Systems. IET, pp. 1–5 (2007)Google Scholar
  29. 29.
    Grant, M., Boyd, S.: (2016, February) CVX: Matlab software for disciplined convex programming.
  30. 30.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Muhammad Abdul Hadi
    • 1
    Email author
  • Muhammad Naveed Tabassum
    • 2
  • Saleh Alshebeili
    • 3
  1. 1.Department of Electrical Engineering and PSATRIKing Saud University (KSU)RiyadhSaudi Arabia
  2. 2.Department of Signal Processing and AcousticsAalto UniversityAaltoFinland
  3. 3.Department of Electrical EngineeringKSURiyadhSaudi Arabia

Personalised recommendations