Signal, Image and Video Processing

, Volume 11, Issue 3, pp 431–438 | Cite as

A receiver aware H.264/AVC encoder for decoder complexity control in mobile applications

  • Mehdi Semsarzadeh
  • Hoda RoodakiEmail author
  • Alireza Aminlou
  • Mahmoud Reza Hashemi
  • Shervin Shirmohammadi
Original Paper


Due to the power limitations of mobile devices, high-quality video decoding is still a main concern, because it quickly drains battery. In this paper, an H.264/AVC receiver aware encoder has been designed that (1) takes into account all of the decoder modules of a receiver, unlike existing RAEs that only consider some of these modules and are therefore sub optimal, and (2) is independent of decoder implementations and platforms. Furthermore, a decoder complexity controller has been proposed that reduces the complexity of different decoder modules, while minimum distortion is achieved. Finally, we formulate and solve a generic RAE optimization problem, and apply this solution to control the computational resource allocation at the macroblock level of a RAE. Our experiments indicate that the proposed approach can reduce the complexity of different modules by up to 10 % with no quality degradation. In addition, the average error of the proposed complexity controller is 0.8 %, making the accuracy of the system very close to 1.


Receiver aware encoding Decoder complexity modeling Complexity control H.264/AVC 


  1. 1.
    Correa, G., Assuncao, P., Agostini, L., da Silva Cruz, L.A.: Computational resource management for video coding in mobile environments. Model. Optim. Sci. Technol. 3, 515–549 (2014)CrossRefGoogle Scholar
  2. 2.
    Ji, W., Liu, J., Chen, M., Chen, Y.: Power-efficient video encoding on resource-limited systems: a game-theoretic approach. Future Gener. Comput. Syst. 28(2), 427–436 (2012)Google Scholar
  3. 3.
    Semsarzadeh, M., Lotfi, A., Hashemi, M.R., Shirmohammadi, S.: A fine-grain distortion and complexity aware parameter tuning model for the H.264/AVC encoder. Signal Process. Image Commun. 28(5), 441–457 (2013)CrossRefGoogle Scholar
  4. 4.
    Nam, H.M., Jeong, J.Y., Byun, K., Kim, J.O., Ko, S.J.: A complexity scalable H.264 decoder with downsizing capability for mobile devices. IEEE Trans. Consum. Electron. 56(2), 1025–1033 (2010)CrossRefGoogle Scholar
  5. 5.
    Lee, H., Kim, J., Pham Van, L., Jung, B., Choi, K., Joo, Y., Jeon, B.: Complexity scalable video decoding scheme for H.264/AVC. In: International Conferences on Advances in Multimedia, Budapest, Hungary (2011)Google Scholar
  6. 6.
    Bhattacharya, A., Banerjee, A., Sur-Kolay, S.: Energy-aware H.264 decoding. Lect. Notes Comput. Sci. 8337, 200–211 (2014)CrossRefGoogle Scholar
  7. 7.
    Lee, H., Park, Y., Jeon, B.: Optimal complexity scalable H.264/AVC video decoding scheme for portable multimedia devices. Opt. Eng. Spec. Sect. Video Compress. Technol. 52(7), 071508-1–071508-11 (2013)Google Scholar
  8. 8.
    Andreopoulos, Y., van der Schaar, M.: Complexity-constrained video bitstream shaping. IEEE Trans. Signal Process. 55(5), 1967–1974 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kontorinis, N., Andreopoulos, Y., van der Schaar, M.: Statistical framework for video decoding complexity modeling and prediction. IEEE Trans. Circuits Syst. Video Technol. 19(7), 1000–1013 (2009)CrossRefGoogle Scholar
  10. 10.
    Semsarzadeh, M., Langroodi, M. J., Hashemi, M. R., Shirmohammadi, S.: Complexity modeling of the motion compensation process of the H.264/AVC video coding standard. In: Proceedidings of IEEE International Conference on Multimedia & Expo (ICME), Melbourne, VIC Australia (2012)Google Scholar
  11. 11.
    Semsarzadeh, M., Hashemi, M.R., Shirmohammadi, S.: A generic, comprehensive and granular decoder complexity model for the H.264/AVC standard. J. Vis. Commun. Image Represent. 25(7), 1686–1703 (2014)CrossRefGoogle Scholar
  12. 12.
    Langeroodi, M. Jamali, Peters, J., Shirmohammadi, S.: Decoder-complexity-aware encoding of motion compensation for multiple heterogeneous receivers. In: ACM Transactions on Multimedia Computing, Communications, and Applications—Special Issue on MMSYS 2014, Vol. 11 Issue 2s (2015)Google Scholar
  13. 13.
    Wiegand, T., Girod, B.: Lagrange multiplier selection in hybrid video coder control. In: IEEE International Conference on Image Processing, Thessaloniki,Greece (2001)Google Scholar
  14. 14.
    JVT reference Software version 16.2, available at: (2016)

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Multimedia Processing Laboratory at the School of Electrical and Computer Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.K. N. Toosi University of TechnologyTehranIran
  3. 3.University of OttawaOttawaCanada

Personalised recommendations