Signal, Image and Video Processing

, Volume 10, Issue 6, pp 1135–1142 | Cite as

SIH: segmented intensity histogram for orientation estimation in image matching

  • Murat PekerEmail author
  • Fuat Karakaya
Original Paper


In this paper, we propose a fast and effective new method to reduce the overhead cost of orientation estimation. The proposed method uses the summation of intensity values from segments of image patches and forms a histogram based on those values. As a result, it is faster than SIFT-like algorithms because it does not require computation of gradient orientations and magnitudes. Also, it is as fast as other intensity-based algorithms with better image matching performance. Proposed method could be easily integrated to any image matching algorithms. Test results indicate that SIFT integrated with proposed orientation estimation method produces comparable results as the original multi-angle SIFT algorithm with less execution time.


Image matching Local features Dominant orientation Rotation invariance SIFT Orientation estimation Keypoint matching 


  1. 1.
    Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74(1), 59–73 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Huang, D., Zhu, C., Wang, Y., Chen, L.: HSOG: a novel local image descriptor based on histograms of the second-order gradients. IEEE Trans. Image Process. 23(11), 4680–4695 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Makar, M., Chandrasekhar, V., Tsai, S.S., Chen, D., Girod, B.: Interframe coding of feature descriptors for mobile augmented reality. IEEE Trans. Image Process. 23(8), 3352–3367 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhou, W., Wang, C., Xiao, B., Zhang, Z.: SLD: a novel robust descriptor for image matching. IEEE Signal Process. Lett. 21(3), 339–342 (2014)CrossRefGoogle Scholar
  5. 5.
    Dubey, S.R., Singh, S.K., Singh, R.K.: Rotation and illumination invariant interleaved intensity order-based local descriptor. IEEE Trans. Image Process. 23(12), 5323–5333 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Wu, J., Cui, Z., Sheng, V.S., Zhao, P., Su, D., Gong, S.: A comparative study of SIFT and its variants. Meas. Sci. Rev. 13(3), 122–131 (2013)CrossRefGoogle Scholar
  7. 7.
    Ambai, M., Yoshida, Y.: CARD: compact and real-time descriptors. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 97–104 (2011)Google Scholar
  8. 8.
    Bellavia, F., Tegolo, D., Valenti, C.: Keypoint descriptor matching with context-based orientation estimation. Image Vis. Comput. 32(9), 559–567 (2014)CrossRefGoogle Scholar
  9. 9.
    Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004 (CVPR 2004), vol. 2, pp. II-506–II-513 (2004)Google Scholar
  10. 10.
    Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using affine-invariant regions. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, vol. 2, pp. II-319–II-324 (2003)Google Scholar
  11. 11.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  12. 12.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  13. 13.
    Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2911–2918 (2012)Google Scholar
  14. 14.
    Rosin, P.L.: Measuring corner properties. Comput. Vis. Image Underst. 73(2), 291–307 (1999)Google Scholar
  15. 15.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011)Google Scholar
  16. 16.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  17. 17.
    Porikli, F.: Integral histogram: a fast way to extract histograms in cartesian spaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 (CVPR 2005), vol. 1, pp. 829–836 (2005)Google Scholar
  18. 18.
    Taylor, S., Drummond, T.: Binary histogrammed intensity patches for efficient and robust matching. Int. J. Comput. Vis. 94(2), 241–265 (2011)CrossRefGoogle Scholar
  19. 19.
    Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms (2008)Google Scholar
  20. 20.
    Mikolajczyk, K., Schmid, C.: Affine covariant features (2014)Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Electrical and Electronics Engineering FacultyNigde UniversityNiǧdeTurkey

Personalised recommendations