Signal, Image and Video Processing

, Volume 10, Issue 6, pp 1119–1126 | Cite as

Error-resilient packet-switched mobile video telephony with channel-adaptive rateless coding and early reference picture selection

  • Muneeb Dawood
  • Raouf Hamzaoui
  • Shakeel Ahmad
  • Marwan Al-Akaidi
Original Paper


Providing high-quality video for packet-switched wireless video telephony on handheld devices is a challenging task due to packet loss, varying bandwidth, and end-to-end delay constraints. While many error resilience techniques have been proposed for video transmission over wireless channels, only a few were specifically designed for mobile video telephony. We propose a low-complexity channel-adaptive error resilience technique for packet-switched mobile video telephony, which combines rateless coding, feedback, and reference picture selection. In contrast to previous approaches, our technique uses cumulative feedback at every transmission opportunity and predicts when decoding is likely to fail so that reference picture selection can be triggered at an early stage. Experimental results for H.264 video sequences show that the proposed technique can achieve improvements of 1.64 dB in peak signal-to-noise ratio over benchmark techniques in simulated Long-Term Evolution networks.


Video streaming Video telephony Error resilience Rateless codes 


  1. 1.
    Khan, F.: LTE for 4G Mobile Broadband—Air Interface Technologies and Performance. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  2. 2.
    Myers, D.J.: Mobile Video Telephony for 3G Wireless Networks. McGraw-Hill, New York (2005)Google Scholar
  3. 3.
    3GPP TS 26.114 V13.0.0 (2015-06): 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; IP Multimedia Subsystem (IMS); Multimedia Telephony; Media handling and interaction (Release 13) (2015)Google Scholar
  4. 4.
    3GPP Technical Specification 26.236 (v 7.3.0): packet switched conversational multimedia applications; Transport protocols (2008)Google Scholar
  5. 5.
    Nafaa, A., Taleb, T., Murphy, L.: Forward error correction strategies for media streaming over wireless networks. IEEE Commun. Mag. 46(1), 72–79 (2008)CrossRefGoogle Scholar
  6. 6.
    Lee, H.R., Jeong, Y.W., Kim, J.S., Wu, D., Seo, K.D.: Estimation of accurate effective loss rate for FEC video transmission. Signal Process. Image Commun. 29(6), 678–698 (2014)CrossRefGoogle Scholar
  7. 7.
    Kim, C.K., Lee, H.R., Jung, T.J., Kim, B.G., Seo, K.D.: An efficient delay-constrained ARQ scheme for MMT packet-based real-time video streaming over IP networks. J. Real-Time Image Process. (2015). doi: 10.1007/s11554-015-0503-9
  8. 8.
    Usman, M., He, X., Xu, M., Lam, K.-M.: Survey of error concealment techniques: research directions and open issues. In: Proceedings Picture Coding Symposium (PCS), pp. 233–238. Cairns, Australia (2015)Google Scholar
  9. 9.
    Wang, Y., Wenger, S., Wen, J., Katsaggelos, A.K.: Review of error resilient coding techniques for real-time video communications. IEEE Signal Process. Mag. 17(4), 61–82 (2000)CrossRefGoogle Scholar
  10. 10.
    Wenger, S.: H.264/AVC over IP. IEEE Trans. Circuits Syst. Video Technol. 13(7), 645–656 (2003)CrossRefGoogle Scholar
  11. 11.
    Girod, B., Färber, N.: Feedback-based error control for mobile video transmission. Proc. IEEE 87(10), 1707–1723 (1999)CrossRefGoogle Scholar
  12. 12.
    Devadoss, J., Singh, V., Ott, J., Liu, C., Wang, Y.-K., Curcio, I.: Evaluation of error resilience mechanisms for 3G conversational video. In: Proceedings 10th IEEE International Symposium on Multimedia, pp. 378–383. Berkeley, CA (2008)Google Scholar
  13. 13.
    Yoon, D.H., Pang, H.S., Ji, S.: Spiral intra macroblock refresh with motion vector restriction for low bit-rate video telephony over a 3G network. IEEE Trans. Consum. Electron. 50(4), 1038–1043 (2004)CrossRefGoogle Scholar
  14. 14.
    Liu, L., Zhang, S., Ye, X., Zhang, Y.: Error resilience schemes of H.264/AVC for 3G conversational video services. In: Proceedings Fifth International Conference on Computer and Information Technology, pp. 657–661. Shanghai, China (2005)Google Scholar
  15. 15.
    Yu, H.-B., Wang, C., Yu, S.: A novel error recovery scheme for H.264 video and its application in conversational services. IEEE Trans. Consum. Electron. 50(1), 329–334 (2004)CrossRefGoogle Scholar
  16. 16.
    Zia, W., Diepold, K., Stockhammer, T.: Complexity constrained robust video transmission for hand-held devices. In: Proceedings IEEE International Conference on Image Processing 2007 (ICIP 2007), vol. 4, pp. 261–264. San Antonio, TX (2007)Google Scholar
  17. 17.
    Zia, W., Afzal, T., Xu, W., Liebl, G., Stockhammer, T.: Interactive error control for mobile video telephony. In: Proceedings IEEE International Conference on Communications 2007 (ICC 2007), pp. 1797–1802. Glasgow, Scotland (2007)Google Scholar
  18. 18.
    Dawood, M., Hamzaoui, R., Ahmad, S., Al-Akaidi, M.: Error-resilient packet switched H.264 mobile video telephony with LT coding and reference picture selection. In: Proceedings EUSIPCO 09, Glasgow, Scotland (2009)Google Scholar
  19. 19.
    Luby, M.: LT codes. In: Proceedings 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 271–280. Vancouver, BC, Canada (2002)Google Scholar
  20. 20.
    Shokrollahi, A.: Raptor codes. IEEE Trans. Inf. Theory 52(6), 2551–2567 (2006)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Dawood, M., Hamzaoui, R., Ahmad, S., Al-Akaidi, M.: Error resilient packet-switched video telephony with adaptive rateless coding and reference picture selection. In: Proceedings MESM 2010, Middle Eastern Multiconference on Simulation and Modelling, Alexandria, Egypt (2010)Google Scholar
  22. 22.
    Holma, H., Toskala, A. (eds.): LTE for UMTS—OFDMA and SC-FDMA Based Radio Access. Wiley, Hoboken (2009)Google Scholar
  23. 23.
    3GPP Technical Specification 23.107 (v 8.0.0): Quality of Service (QoS) concept and architecture (2008)Google Scholar
  24. 24.
    Aramvith, S., Lin, C.-W., Roy, S., Sun, M.-T.: Wireless video transport using conditional retransmission and low-delay interleaving. IEEE Trans. Circuits Syst. Video Technol. 12(6), 558–565 (2002)CrossRefGoogle Scholar
  25. 25.
    Wen, J., Dai, Q., Jin, Y.: Channel-adaptive hybrid ARQ/FEC for robust video transmission over 3G. In: Proceedings IEEE International Conference on Multimedia and Expo 2005, Amsterdam, The Netherlands (2005)Google Scholar
  26. 26.
    Chen, M., Wei, G.: Multi-stages hybrid ARQ with conditional frame skipping and reference frame selecting scheme for real-time video transport over wireless LAN. IEEE Trans. Consum. Electron. 50(1), 158–167 (2004)Google Scholar
  27. 27.
    Vaz, R.N., Kuipers, B.W.M., Nunes, M.S.: Video quality optimization algorithm for video-telephony over IP networks. In: Proceedings IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications (2010)Google Scholar
  28. 28.
    Jana, S., Baik, E., Pande, A., Mohapatra, P.: Improving mobile video telephony. In: Proceedings Eleventh IEEE International Conference on Sensing, Communication, and Networking (2014)Google Scholar
  29. 29.
    Yu, C., Xu, Y., Liu, B., Liu, Y.: Can you SEE me now? A measurement study of mobile video calls. In: Proceeding INFOCOM, Toronto, Canada (2014)Google Scholar
  30. 30.
    Mills, D., Delaware, U., Martin, J., Burbank, J., Kasch, W.: Network Time Protocol (Version 4): Protocol and Algorithms Specification. Request for Comments 5905. Internet Engineering Task Force (2010)Google Scholar
  31. 31.
    Zorzi, M., Rao, R.R., Milstein, L.B.: On the accuracy of a first-order Markov model for data transmission on fading channels. In: Proceedings International Conference Universal Personal Communications, pp. 211–215 (1995)Google Scholar
  32. 32.
    Ahmad, S., Hamzaoui, R., Al-Akaidi, M.: Unequal error protection using fountain codes with applications to video communication. IEEE Trans. Multimed. 13(1), 92–101 (2011)CrossRefGoogle Scholar
  33. 33.
    3GPP Technical Specification 22.105 (v 8.4.0): Service aspects; Services and service capabilities (2007)Google Scholar
  34. 34.
    Luby, M., Shokrollahi, A., Watson, M., Stockhammer, T., Minder, L.: Forward Error Correction Scheme for Object Delivery, Internet Engineering Task Force (IETF) Request for Comments: 6330 (2011)Google Scholar
  35. 35.
    Shokrollahi, A., Luby, M.: Raptor codes. Found. Trends Commun. Inf. Theory 6(3–4), 213–322 (2009)MATHGoogle Scholar
  36. 36.
    Ohm, J.-R., Sullivan, G.J., Schwarz, H., Tan, T.K., Wiegand, T.: Comparison of the coding efficiency of video coding standards—including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22(12), 1669–1684 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Muneeb Dawood
    • 1
  • Raouf Hamzaoui
    • 2
  • Shakeel Ahmad
    • 3
  • Marwan Al-Akaidi
    • 4
  1. 1.Teesside UniversityMiddlesbroughUK
  2. 2.De Montfort UniversityLeicesterUK
  3. 3.Southampton Solent UniversitySouthamptonUK
  4. 4.Arab Open UniversityKuwait cityKuwait

Personalised recommendations