Advertisement

Signal, Image and Video Processing

, Volume 9, Supplement 1, pp 295–303 | Cite as

Matching caricatures to photographs

  • Bahri Abaci
  • Tayfun Akgul
Original Paper

Abstract

Facial caricatures are informative funny images that allow us to identify a subject even with a few lines and dots. Matching caricatures to photographs is a challenging cross-modal face matching problem. This paper addresses this problem by defining a set of qualitative face features both for caricatures and photographs where features are automatically extracted from photos and manually labeled in caricatures. Additionally we release a publicly available caricature-photograph database with 200 caricatures and corresponding photomates. In our experiments, we use genetic algorithms and logistic regression and achieve over \(\mathrm{30.0}\,\%\) recognition rate at 0.1 false accept rate.

Keywords

Caricature recognition Facial attributes Genetic algorithms 

Notes

Acknowledgments

This work is supported by The Scientific and Technological Research Council of Turkey (TUBITAK), Project No: 112E142. The authors would like to thank Anil Jain, Brendon Klare, Serhat Bucak and Mehmet Kerem Turkcan for their interest, initial help and contribution.

References

  1. 1.
    Akgul, T.: Introducing the cartoonist. IEEE Antennas Propag. Mag. 49(3), 162–162 (2007)CrossRefGoogle Scholar
  2. 2.
    Akgul, T.: Can an algorithm recognize montage portraits as human faces?[in the spotlight]. IEEE Signal Process. Mag. 28(1), 150–158 (2011)CrossRefGoogle Scholar
  3. 3.
    Ayhan, O., Abaci, B., Akgul, T.: Improved active shape model for variable illumination conditions. In: IEEE 15th International Workshop on Multimedia Signal Processing (MMSP), pp. 322–327. (2013)Google Scholar
  4. 4.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.: Eigenfaces versus fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)CrossRefGoogle Scholar
  5. 5.
    Bhatt, H.S., Bharadwaj, S., Singh, R., Vatsa, M.: Memetically optimized mcwld for matching sketches with digital face images. IEEE Trans. Inf. Forensics Secur. 7(5), 1522–1535 (2012)CrossRefGoogle Scholar
  6. 6.
    Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)zbMATHGoogle Scholar
  7. 7.
    Fernández, A., Garca, R., Usamentiaga, R., Casado, R.: Glasses detection on real images based on robust alignment. Mach. Vis. Appl. 26(4), 519–531 (2015). doi: 10.1007/s00138-015-0674-1 CrossRefGoogle Scholar
  8. 8.
    Freedman, D.A.: Statistical Models: Theory and Practice. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  9. 9.
    Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)CrossRefGoogle Scholar
  10. 10.
    Grgic, M., Delac, K., Grgic, S.: Scface-surveillance cameras face database. Multimed. Tools Appl. 51(3), 863–879 (2011)CrossRefGoogle Scholar
  11. 11.
    Han, H., Klare, B.F., Bonnen, K., Jain, A.K.: Matching composite sketches to face photos: a component based approach. IEEE Trans. Inf. Forensics Secur. 8(1), 191–204 (2013)CrossRefGoogle Scholar
  12. 12.
    Hsu, R.-L., Jain, A.K.: Semantic face matching. In: IEEE International Conference on Multimedia and Expo, vol. 2, pp. 145–148. (2002)Google Scholar
  13. 13.
    Kabakcioglu, G.: In: Nasrettin Hoca’nin Torunlari: Karikaturcu Portreleri. (Pan Yayincilik, 2002). 975-17-3013-9Google Scholar
  14. 14.
    Klare, B.F., Li, Z., Jain, A.K.: Matching forensic sketches to mug shot photos. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 639–646 (2011)CrossRefGoogle Scholar
  15. 15.
    Klare, B.F., Bucak, S.S., Jain, A.K., Akgul, T.: Towards automated caricature recognition. In: 5th IAPR International Conference on Biometrics (ICB), pp. 139–146. (2012)Google Scholar
  16. 16.
    Klum, S., Han, H., Jain, A.K., Klare, B.F.: Sketch based face recognition: forensic vs. composite sketches. In: International Conference on Biometrics (ICB), pp. 1–8. (2013)Google Scholar
  17. 17.
    Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans. Evol. Comput. 9(5), 474–488 (2005)CrossRefGoogle Scholar
  18. 18.
    Kumar, N., Berg, A., Belhumeur, P.N., Nayar, S.: Describable visual attributes for face verification and image search. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 1962–1977 (2011)CrossRefGoogle Scholar
  19. 19.
    Le, T.H.N., Luu, K., Seshadri, K., Savvides, M.: Beard and mustache segmentation using sparse classifiers on self-quotient images. In: 19th IEEE International Conference on Image Processing (ICIP), pp. 165–168. (2012)Google Scholar
  20. 20.
    Lian, H.-C., Lu, B.-L.: Multi-view gender classification using local binary patterns and support vector machines. In: Wang, J., Yi, Z., Zurada, J., Lu, B.-L., Yin, H. (eds). Advances in Neural Networks-ISNN 2006, Lecture Notes in Computer Science, vol. 3972, pp. 202–209. Springer, Berlin. (2006). ISBN: 978-3-540-34437-7Google Scholar
  21. 21.
    Martinez, A.M.: The AR face database. CVC Technical Report 24 (1998)Google Scholar
  22. 22.
    Mauro, R., Kubovy, M.: Caricature and face recognition. Mem. Cognit. 20(4), 433–440 (1992)CrossRefGoogle Scholar
  23. 23.
    Milborrow, S., Morkel, J., Nicolls, F.: The muct landmarked face database. Pattern Recognit. Assoc. S. Afr. 201, 179–184 (2010)Google Scholar
  24. 24.
    Moghaddam, B., Pentland, A.: Probabilistic visual learning for object detection. In: Fifth International Conference on Computer Vision, IEEE, pp. 786–793. (1995)Google Scholar
  25. 25.
    Oral, T.: In: Yuz Yuze. Pan Yayincilik, Istanbul (2005). ISBN: 975-8434-82-9Google Scholar
  26. 26.
    Oral, T.: In: Memnu-Niyet-Sizler. Schneidertempel Sanat Merkezi, Istanbul (2013)Google Scholar
  27. 27.
    Ouyang, S., Hospedales, T., Song, Y-Z., Li, X.: Cross-modal face matching: beyond viewed sketches. In: Computer Vision – ACCV 2014, vol. 9004, pp. 210–225. Springer International Publishing, Cham (2015). ISBN: 978-3-319-16807-4Google Scholar
  28. 28.
    Poroy, S.: In: Semih Poroy Portreler. Karikatur Vakfi Yayinlari, Ankara (1998). ISBN: 975-17-3013-9Google Scholar
  29. 29.
    Roth, J., Liu, X.: On Hair Recognition in the wild by machine. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI). (2014)Google Scholar
  30. 30.
    Toseeb, U., Keeble, D.R., Bryant, E.J.: The significance of hair for face recognition. PloS One 7(3), 34144 (2012)CrossRefGoogle Scholar
  31. 31.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  32. 32.
    Wang, D., Shan, S., Zeng, W., Zhang, H., Chen, X.: A novel two-tier Bayesian based method for hair segmentation. In: 16th IEEE International Conference on Image Processing (ICIP), pp. 2401–2404. (2009)Google Scholar
  33. 33.
    Wang, X., Tang, X.: Face photo-sketch synthesis and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 1955–1967 (2009)CrossRefGoogle Scholar
  34. 34.
    Wu, C., Liu, C., Shum, H.-Y., Xy, Y.-Q., Zhang, Z.: Automatic eyeglasses removal from face images. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 322–336 (2004)CrossRefGoogle Scholar
  35. 35.
    Zhou, E., Fan, H., Cao, Z., Jiang, Y., Yin, Q.: Extensive facial landmark localization with coarse-to-fine convolutional network cascade. In: 2013 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 386–391. (2013)Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of Electronic and Communication EngineeringIstanbul Technical UniversityMaslakTurkey

Personalised recommendations