Signal, Image and Video Processing

, Volume 10, Issue 4, pp 769–775 | Cite as

An incremental LMS network with reduced communication delay

  • Amir RastegarniaEmail author
  • Azam Khalili
  • Wael M. Bazzi
  • Saeid Sanei
Original Paper


Successful implementation of incremental adaptive networks requires that the sampling speed of the network be faster than the time between two consecutive measurements taken by nodes. This issue affects the performance of incremental based algorithm in networks with large number of nodes as well as non-stationary environments. In this paper, we introduce a modified incremental least mean-square (ILMS) algorithm that resolves this problem. In the proposed algorithm, every node updates its local estimate when the measurement data are available (temporal processing). When the estimate from the previous node is also available, an adaptive strategy is used to combine the available estimates to further improve the network learning performance (spatial cooperation). We examine the performance of the proposed algorithm in two scenarios including the network with noisy links and non-stationary environment. Simulation results show the superior performance of the proposed algorithm in comparison with the original ILMS algorithm.


Adaptive networks Distributed estimation DILMS algorithm 


  1. 1.
    Estrin, D., Girod, L., Pottie, G., Srivastava, M.: Instrumenting the world with wireless sensor networks. In Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP 01). 2001 IEEE International Conference on, vol. 4, pp. 2033–2036 (2001)Google Scholar
  2. 2.
    Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans. Inf. Theory 52(6), 2508–2530 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Akyildiz, I.F., Melodia, T., Chowdury, K.R.: A survey on wireless multimedia sensor networks. Comput. Netw. 51(4), 921–960 (2007)Google Scholar
  4. 4.
    Xiao, J.-J., Ribeiro, A., Luo, Z.-Q., Giannakis, G.: Distributed compression–estimation using wireless sensor networks. IEEE Signal Process. Mag. 23(4), 27–41 (2006)CrossRefGoogle Scholar
  5. 5.
    Schizas, I., Mateos, G., Giannakis, G.: Distributed LMS for consensus-based in-network adaptive processing. IEEE Trans. Signal Process. 57(6), 2365–2382 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kar, S., Moura, J.: Convergence rate analysis of distributed gossip (linear parameter) estimation: fundamental limits and tradeoffs. IEEE J. Sel. Top. Signal Process. 5(4), 674–690 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Sayed, A.H., Tu, S.-Y., Chen, J., Zhao, X., Towfic, Z.: Diffusion strategies for adaptation and learning over networks. IEEE Signal Process. Mag. 30(3), 155–171 (2013)CrossRefGoogle Scholar
  8. 8.
    Sayed, A.: Adaptive networks. Proc. IEEE 102(4), 460–497 (2014)Google Scholar
  9. 9.
    Chen, J., Zhao, X., Sayed, A.: Bacterial motility via diffusion adaptation. In: Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference on, pp. 1930–1934 (2010)Google Scholar
  10. 10.
    Chen, J., Sayed, A.H.: Bio-inspired cooperative optimization with application to bacteria motility. In: Proceedings of Prague, Czech Republic, May, ICASSP, pp. 5788–5791 (2011)Google Scholar
  11. 11.
    Cattivelli, F., Sayed, A.H.: Modeling bird flight formations using diffusion adaptation. IEEE Trans. Signal Process. 59(5), 2038–2051 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Li, J., Sayed, A.H.: Modeling bee swarming behavior through diffusion adaptation with asymmetric information sharing. EURASIP J. Adv. Signal Process. 2012(18), 1–17 (2012)Google Scholar
  13. 13.
    Khalili, A., Rastegarnia, A., Islam, M., Yang, Z.: A bio-inspired cooperative algorithm for distributed source localization with mobile nodes. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp. 3515–3518 (2013)Google Scholar
  14. 14.
    Sayed, A.H.: Diffusion adaptation over networks, CoRR, vol. abs/1205.4220 (2012)Google Scholar
  15. 15.
    Sayed, A.H., Lopes, C.G.: Distributed recursive least-squares strategies over adaptive networks. In: Proceedings of Asilomar Conference Signals Systems, Computers, Monterey, CA, pp. 233–237 (2006)Google Scholar
  16. 16.
    Lopes, C.G., Sayed, A.H.: Incremental adaptive strategies over distributed networks. IEEE Trans. Signal Process. 55(8), 4064–4077 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ram, S., Nedic, A., Veeravalli, V.: Stochastic incremental gradient descent for estimation in sensor networks. In: Signals, Systems and Computers, 2007. ACSSC 2007. Conference Record of the Forty-First Asilomar Conference on, pp. 582–586 (2007)Google Scholar
  18. 18.
    Takahashi, N., Yamada, I.: Incremental adaptive filtering over distributed networks using parallel projection onto hyperslabs. IEICE Tech. Rep. 108, 17–22 (2008)Google Scholar
  19. 19.
    Li, L., Chambers, J.A.: A new incremental affine projection-based adaptive algorithm for distributed networks. Signal Process. 88(10), 2599–2603 (2008)CrossRefzbMATHGoogle Scholar
  20. 20.
    Li, L., Chambers, J.A., Lopes, C.G., Sayed, A.H.: Distributed estimation over an adaptive incremental network based on the affine projection algorithm. IEEE Trans. Signal Process. 58(1), 151–164 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lopes, C.G., Sayed, A.H.: Randomized incremental protocols over adaptive networks. In: Proceedings. Speech, Signal Processing (ICASSP), Dallas, TX, March, IEEE International Conference on Acoustics, pp. 3514 – 3517 (2010)Google Scholar
  22. 22.
    Cattivelli, F., Sayed, A.H.: Analysis of spatial and incremental LMS processing for distributed estimation. IEEE Trans. Signal Process. 59(4), 1465–1480 (2011)CrossRefGoogle Scholar
  23. 23.
    Saeed, M., Sheikh, A.U.H.: A new lms strategy for sparse estimation in adaptive networks, in personal indoor and mobile radio communications (PIMRC). In: IEEE 23rd International Symposium on, vol. 2012, pp. 1722–1733 (2012)Google Scholar
  24. 24.
    Abadi, M.S.E., Danaee, A.-R.: Low computational complexity family of affine projection algorithms over adaptive distributed incremental networks. AEU Int. J. Electron. Commun. 68(2), 97–110 (2014)CrossRefGoogle Scholar
  25. 25.
    Bogdanovic, N., Plata-Chaves, J., Berberidis, K.: Distributed incremental-based LMS for node-specific parameter estimation over adaptive networks. In: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pp. 5425–5429 (2013)Google Scholar
  26. 26.
    Liu, Y., Tang, W.K.: Enhanced incremental LMS with norm constraints for distributed in-network estimation. Signal Process. 94, 373–385 (2014)CrossRefGoogle Scholar
  27. 27.
    Lopes, C.G., Sayed, A.H.: Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans. Signal Process. 56(7), 3122–3136 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Cattivelli, F.S., Lopes, C.G., Sayed, A.H.: Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 56(5), 1865–1877 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Cattivelli, F.S., Sayed, A.H.: Multilevel diffusion adaptive networks. In: Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing, Taipei, Taiwan (2009)Google Scholar
  30. 30.
    Takahashi, N., Yamada, I., Sayed, A.H.: Diffusion least-mean-squares with adaptive combiners. In: Proceedings of IEEE International Conference on Acoustics. Speech, Signal Processing, Taipei, Taiwan, pp. 2845–2848 (2009)Google Scholar
  31. 31.
    Cattivelli, F., Sayed, A.: Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal Process. 58(3), 1035–1048 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Gharehshiran, O., Krishnamurthy, V., Yin, G.: Distributed energy-aware diffusion least mean squares: game-theoretic learning. IEEE J. Sel. Top. Signal Process. 7(5), 821–836 (2013)CrossRefGoogle Scholar
  33. 33.
    Di Lorenzo, P., Barbarossa, S.: Distributed least mean squares strategies for sparsity aware estimation over gaussian markov random fields. In: Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pp. 5472–5476 (2014)Google Scholar
  34. 34.
    Chen, J., Sayed, A.H.: Diffusion adaptation strategies for distributed optimization and learning over networks. IEEE Trans. Signal Process. 60(8), 4289–4305 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Arablouei, R., Werner, S., Huang, Y.-F., Dogancay, K.: Distributed least mean-square estimation with partial diffusion. IEEE Trans. Signal Process. 62(2), 472–484 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Wen, F.: Diffusion LMP algorithm with adaptive variable power. Electron. Lett. 50(5), 374–376 (2014)CrossRefGoogle Scholar
  37. 37.
    Zhao, X., Tu, S.-Y., Sayed, A.H.: Diffusion adaptation over networks under imperfect information exchange and non-stationary data. IEEE Trans. Signal Process. 60(7), 3460–3475 (2012)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Rastegarnia, A., Bazzi, W., Khalili, A., Chambers, J.: Diffusion adaptive networks with imperfect communications: link failure and channel noise. IET Signal Process. 8(1), 59–66 (2014)Google Scholar
  39. 39.
    Arenas-Garcia, J., Figueiras-Vidal, A., Sayed, A.: Mean-square performance of a convex combination of two adaptive filters. IEEE Trans. Signal Process. 54(3), 1078–1090 (2006)CrossRefGoogle Scholar
  40. 40.
    Khalili, A., Tinati, M., Rastegarnia, A.: Steady-state analysis of incremental lms adaptive networks with noisy links. IEEE Trans. Signal Process. 59(5), 2416–2421 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Amir Rastegarnia
    • 1
    Email author
  • Azam Khalili
    • 1
  • Wael M. Bazzi
    • 2
  • Saeid Sanei
    • 3
  1. 1.Department of Electrical EngineeringMalayer UniversityMalayerIran
  2. 2.Electrical and Computer Engineering DepartmentAmerican University in DubaiDubaiUnited Arab Emirates
  3. 3.Department of ComputingUniversity of SurreyGuildfordUK

Personalised recommendations