Signal, Image and Video Processing

, Volume 10, Issue 4, pp 745–752 | Cite as

Land-use scene classification using multi-scale completed local binary patterns

  • Chen Chen
  • Baochang Zhang
  • Hongjun Su
  • Wei Li
  • Lu Wang
Original Paper


In this paper, we introduce the completed local binary patterns (CLBP) operator for the first time on remote sensing land-use scene classification. To further improve the representation power of CLBP, we propose a multi-scale CLBP (MS-CLBP) descriptor to characterize the dominant texture features in multiple resolutions. Two different kinds of implementations of MS-CLBP equipped with the kernel-based extreme learning machine are investigated and compared in terms of classification accuracy and computational complexity. The proposed approach is extensively tested on the 21-class land-use dataset and the 19-class satellite scene dataset showing a consistent increase on performance when compared to the state of the arts.


Land-use scene classification Multi-scale analysis  Local binary patterns Extreme learning machine 


  1. 1.
    Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Proceedings of ECCV Workshop on Statistical Learning in Computer Vision, Prague, pp. 1–2 (2004)Google Scholar
  2. 2.
    Yang, Y., Newsam, S.: Spatial pyramid co-occurrence for image classification. In: Proceedings of International Conference on Computer Vision, Barcelona, Spain, pp. 1465–1472 (2011)Google Scholar
  3. 3.
    Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, pp. 270–279 (2010)Google Scholar
  4. 4.
    Zhao, L., Tang, P., Huo, L.: A 2-D wavelet decomposition-based bag-of-visual-words model for land-use scene classification. Int. J. Remote Sens. 35(6), 2296–2310 (2014)Google Scholar
  5. 5.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, New York, NY, pp. 2169–2178 (2006)Google Scholar
  6. 6.
    Zhou, L., Zhou, Z., Hu, D.: Scene classification using a multi-resolution bag-of-features model. Pattern Recognit. 46(1), 424–433 (2013)CrossRefGoogle Scholar
  7. 7.
    Zhao, L., Tang, P., Huo, L.: Land-use scene classification using a concentric circle-structured multiscale bag-of-visual-words model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(12), 4620–4631 (2014)CrossRefGoogle Scholar
  8. 8.
    Chen, S., Tian, Y.: Pyramid of spatial relatons for scene-level land use classification. IEEE Trans. Geosci. Remote Sens. 53(4), 1947–1957 (2015)CrossRefGoogle Scholar
  9. 9.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    Risojevic, V., Babic, Z.: Aerial image classification using structural texture similarity. In: Proceedings of IEEE International Symposium on Signal Processing and Information Technology, Bilbao, Spain, pp. 190–195 (2011)Google Scholar
  11. 11.
    Risojevic, V., Babic, Z.: Fusion of global and local descriptors for remote sensing image classification. IEEE Geosci. Remote Sens. Lett. 10(4), 836–840 (2013)CrossRefGoogle Scholar
  12. 12.
    Cheriyadat, A.M.: Unsupervised feature learning for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 52(1), 439–451 (2014)CrossRefGoogle Scholar
  13. 13.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)CrossRefGoogle Scholar
  15. 15.
    Zheng, X., Sun, X., Fu, K., Wang, H.: Automatic annotation of satellite images via multifeature joint sparse coding with spatial relation constraint. IEEE Geosci. Remote Sens. Lett. 10(4), 652–656 (2013)CrossRefGoogle Scholar
  16. 16.
    Zhang, Y., Zheng, X., Liu, G., Sun, X., Wang, H., Fu, K.: Semi-supervised manifold learning based multigraph fusion for high-resolution remote sensing image classification. IEEE Geosci. Remote Sens. Lett. 11(2), 464–468 (2014)Google Scholar
  17. 17.
    Ojala, T., Pietikainen, M., Maenpaa, T.T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefzbMATHGoogle Scholar
  18. 18.
    Li, W., Chen, C., Su, H., Du, Q.: Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 53(7), 3681–3693 (2015)CrossRefGoogle Scholar
  19. 19.
    Chen, C., Jafari, R., Kehtarnavaz, N.: Action Recognition from depth sequences using depth motion maps-based local binary patterns. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Waikoloa Beach, HI, pp. 1092–1099 (2015)Google Scholar
  20. 20.
    Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(2), 513–529 (2012)CrossRefGoogle Scholar
  22. 22.
    Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)CrossRefGoogle Scholar
  23. 23.
    Dai, D., Yang, W.: Satellite image classification via two-layer sparse coding with biased image representation. IEEE Geosci. Remote Sens. Lett. 8(1), 173176 (2011)CrossRefGoogle Scholar
  24. 24.
    Sheng, G., Yang, W., Xu, T., Sun, H.: High-resolution satellite scene classification using a sparse coding based multiple feature combination. Int. J. Remote Sens. 33(8), 2395–2412 (2011)CrossRefGoogle Scholar
  25. 25.
    Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer, New York (2002)zbMATHGoogle Scholar
  26. 26.
    Zhang, F., Du, B., Zhang, L.: Saliency-guided unsupervised feature learning for scene classification. IEEE Trans. Geosci. Remote Sens. 53(4), 2175–2184 (2015)CrossRefGoogle Scholar
  27. 27.
    Shao, W., Yang, W., Xia, G.S., Liu, G.: A hierarchical scheme of multiple feature fusion for high-resolution satellite scene categorization. In: Proceedings of the 9th International Conference on Computer Vision Systems, St. Petersburg, Russia, pp. 324–333 (2013)Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of Texas at DallasRichardsonUSA
  2. 2.School of Automation Science and Electrical EngineeringBeihang UniversityBeijingChina
  3. 3.School of Earth Science and EngineeringHohai UniversityNanjingChina
  4. 4.College of Information Science and TechnologyBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations