Signal, Image and Video Processing

, Volume 10, Issue 4, pp 719–728 | Cite as

A generalized methodology for the gridding of microarray images with rectangular or hexagonal grid

  • Nikolaos Giannakeas
  • Fanis Kalatzis
  • Markos G. Tsipouras
  • Dimitrios I. FotiadisEmail author
Original Paper


Microarrays provide a simple way to measure the level of hybridization of known probes of interest with one or more samples under different conditions. The rapid development of microarray technology requires the implementation of smart and flexible algorithms to deal either with the great amount of data or with the variations of the used hardware. In this paper, a generalized methodology for spot addressing and gridding of microarray images is presented. The methodology can cope with both rectangular and hexagonal grids, which are used for the probes placement onto the substrate. Initially, the methodology identifies the structure of the image, and an efficient spot-by-spot approach has been developed for the detection of all spots in the image. The evaluation of the methodology was performed using both rectangular and hexagonal structured images, merged in a single dataset. The methodology results in high accuracy in the spots detection, ranging from 92.8 to 99.8 % depending on the dataset used.


Microarray image processing Rectangular and hexagonal grids Microarray gridding 



This work is part funded by the European Commission (POCEMON Project, FP7-ICT-2007-216088).


  1. 1.
    Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)CrossRefGoogle Scholar
  2. 2.
    Eisen, M.B., Brown, P.O.: DNA arrays for analysis of gene expression. Methods Enzymol. 303, 179–205 (1999)CrossRefGoogle Scholar
  3. 3.
    Shen, R., Fan, J.B., Campbell, D., Chang, W., Chen, J., Doucet, D., Yeakley, J., Bibikova, M., Wickham-Garcia, E., McBride, C., Steemers, F., Garcia, F., Kermani, B.G., Gunderson, K., Oliphant, A.: High-throughput SNP genotyping on universal bead arrays. Mutat. Res. 573, 70–82 (2005)CrossRefGoogle Scholar
  4. 4.
    MacBeath, G., Stuart, L.: Schreiber printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000)Google Scholar
  5. 5.
    Shinawi, M., Cheung, S.W.: The array CGH and its clinical applications. Drug Discov. Today 13, 760–770 (2008)CrossRefGoogle Scholar
  6. 6.
    Dudoit, S., Yang, Y.H., Callow, M.J., Speed, T.P.: Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat. Sin. 12, 111–139 (2002)Google Scholar
  7. 7.
    Beleana, B., Bordaa, M., Galc, B.L., Terebesa, R.: FPGA based system for automatic cDNA microarray image processing. Comput. Med. Imaging Graph. 36(5), 419–429 (2012)CrossRefGoogle Scholar
  8. 8.
    Athanasiadis, E.I., Cavouras, D.A., Spyridonos, P.P., Glotsos, D.T., Kalatzis, I.K., Nikiforidis, G.C.: Complementary DNA microarray image processing based on the fuzzy Gaussian mixture model. IEEE Trans. Inf. Technol. Biomed. 13(4), 419–425 (2009)Google Scholar
  9. 9.
    Giannakeas, N., Kalatzis, T., Fotiadis, D.I.: Spot addressing for microarray images structured in hexagonal grids. Comput. Methods Programs Biomed. 106(1), 1–13 (2012)CrossRefGoogle Scholar
  10. 10.
    Shao, G., Yang, F., Zhang, Q., Zhou, Q., Luo, L.: Using the maximum between-class variance for automatic gridding of cDNA microarray images. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1–10 (2012)Google Scholar
  11. 11.
    Harikiran, J., Rama-Krishna, D., Phanendra, M.L., Lakshmi, P.V., Kiran -Kumar, R.: Fuzzy C-means with Bi-dimensional empirical mode decomposition for segmentation of microarray image. IJCSI 9(5), 316–321 (2012)Google Scholar
  12. 12.
    Weng, G., Hu, Y., Li, Z.: cDNA microarray image segmentation using shape-adaptive DCT and K-means clustering. In: International Conference in Electrics, Communication and Automatic Control, pp. 317–324 (2012)Google Scholar
  13. 13.
    Liu, J., Feng, Y., Liu, W., Wang, T.: A microarray image gridding method based on image projection difference sequences analysis and local extrema searching. In: 10th World Congress on Intelligent Control and Automation, pp. 4961–4964 (2012)Google Scholar
  14. 14.
    Yao, Z., Shunxiang, W.: Statistics-adaptive method for cDNA microarray images gridding. In: 4th International Conference on Digital Home, pp. 380–383 (2012)Google Scholar
  15. 15.
    Labib, F.E.-Z., Fouad, I., Mabrouk, M., Sharawy, A.: An efficient fully automated method for gridding microarray images. Am. J. Biomed. Eng. 2(3), 115–119 (2012)CrossRefGoogle Scholar
  16. 16.
    Schena, M.: Microarray Biochip Technology. Eaton Publishing, Natick (2000)Google Scholar
  17. 17.
    Eisen, M.B.: ScanAlyse. http://rana.Stanford.EDU/software/ (1999)
  18. 18.
    Fielden, M.R., Halgren, R.G., Dere, E., Zacharewski, T.R.: GP3: GenePix post-processing program for automated analysis of raw microarray data. Bioinformatics 18, 771–773 (2002)CrossRefGoogle Scholar
  19. 19.
    Bajcsy, P.: Gridline: automatic grid alignment in dna microarray scans. IEEE Trans. Image Process. 13, 15–25 (2004)CrossRefGoogle Scholar
  20. 20.
    Blekas, K., Galatsanos, N., Likas, A., Lagaris, I.E.: Mixture model analysis of DNA microarray images. IEEE Trans. Med. Imaging 24(7), 901–909 (2005)CrossRefGoogle Scholar
  21. 21.
    Jain, A.N., Tokuyasu, T.A., Snijders, A.M., Segraves, R., Albertson, D.G., Pinkel, D.: Fully automated quantification of microarray image data. Genome Res. 12, 325–332 (2002)CrossRefGoogle Scholar
  22. 22.
    Hirata, R., Barrera, J., Hashimoto, R.F., Dantas, D.: Microarray gridding by mathematical morphology. In: Proceedings of the Ijth Brazilian Symposium on Computer Graphics and Image Processing, pp. 112–119 (2001)Google Scholar
  23. 23.
    Bengtsson, A., Bengtsson, H.: Microarray image analysis: background estimation using quantile and morphological filters. BMC Bioinformat. 7, 96–105 (2006)CrossRefGoogle Scholar
  24. 24.
    Lonardi, S., Yu, L.: Gridding and compression of microarray images. In: Proceedings of IEEE Computational Systems Bioinformatics Conference-Workshops (CSBW’05), pp. 122–130 (2004)Google Scholar
  25. 25.
    Bariamis, D., Maroulis, D., Iakovidis, D.K.: Automatic DNA microarray gridding based on support vector machines. In: The Proceedings of 8th IEEE International Conference on BioInformatics and BioEngineering, pp. 1–5 (2008)Google Scholar
  26. 26.
    Bariamis, D., Maroulis, D., Iakovidis, D.K.: Unsupervised SVM-based gridding for DNA microarray images. Comput. Med. Imaging Graph. 34, 418–425 (2010)CrossRefGoogle Scholar
  27. 27.
    Zacharia, E., Maroulis, D.: An original genetic approach to the fully-automatic gridding of microarray images. IEEE Trans. Med. Imaging 27, 805–813 (2008)CrossRefGoogle Scholar
  28. 28.
    Jung, H.-Y., Cho, H.-G.: An automatic block and spot indexing with k-nearest neighbors graph for microarray image analysis. Bioinformatics 18, S141–S151 (2002)CrossRefGoogle Scholar
  29. 29.
    Giannakeas, N., Fotiadis, D.I., Politou, A.S.: An automated method for gridding in microarray images. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5876–5879 (2006)Google Scholar
  30. 30.
    Giannakeas, N., Fotiadis, D.I.: An automated method for gridding and segmentation Of cDNA microarray images. Comput. Med. Imaging Graph. 33, 40–49 (2009)CrossRefGoogle Scholar
  31. 31.
    Galinsky, V.L.: Automatic registration of microarray images. I. Rectangular grid. Bioinformatics 19, 1824–1831 (2003)CrossRefGoogle Scholar
  32. 32.
    Steinfath, M., Wruck, W., Seidel, H., Lehrach, H., Radelof, U., O’Brien, J.: Automated image analysis for array hybridization experiments. Bioinformatics 17, 634–641 (2001)CrossRefGoogle Scholar
  33. 33.
    Ceccarelli, M., Antoniol, G.: A deformable grid-matching approach for microarray images. IEEE Trans. Image Process. 15, 3178–3188 (2006)CrossRefGoogle Scholar
  34. 34.
    Galinsky, V.L.: Automatic registration of microarray images. I. Hexagonal grid. Bioinformatics 19, 1832–1836 (2003)CrossRefGoogle Scholar
  35. 35.
    Gollub, J., Ball, C.A., Binkley, G., Demeter, K., Finkelstein, D.B., Hebert, J.M., Hernandez-Boussard, T., Jin, H., Kaplper, M., Matese, J.C., Schroeder, M., Brown, P.O., Botstein, D., Sherlock, G.: The Stanford Microarray Database: data access and quality assessment tools. Nucleic Acids Res. 31(1), 94–96 (2003)CrossRefGoogle Scholar
  36. 36.
    Ionita-Laza, I., Rogers, A.J., Lange, C., Raby, B.A., Lee, C.: Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics 93(1), 22–26 (2009)CrossRefGoogle Scholar
  37. 37.
    Nykter, M., Aho, T., Ahdesmäki, M., Ruusuvuori, P., Lehmussola, A., Yli-Harja, O.: Simulation of microarray data with realistic characteristics. BMC Bioinformat. 7, 349–365 (2006)CrossRefGoogle Scholar
  38. 38.
    Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2000)Google Scholar
  39. 39.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley. University of California Press, vol. 1, pp. 281–297 (1967)Google Scholar
  40. 40.
    Otsu, N.: A threshold selection method for gray-levels histograms. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583–598 (1979)Google Scholar
  41. 41.
    Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. In: Proceedings of ACM Computing Surveys, vol. 23, pp. 345–405 (1991)Google Scholar
  42. 42.
    Kalatzis, F.G., Giannakeas, N., Exarchos, T.P., Lorenzelli, L., Adami, A., Decarli, M., Lupoli, S., Macciardi, F., Markoula, S., Georgiou, I., Fotiadis, D.I.: Developing a genomic-based point-of-care diagnostic system for rheumatoid arthritis and multiple sclerosis. In: 31st Annual International Conference of IEEE Engineering in Medicine and Biology Society, pp. 827–830 (2009)Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Nikolaos Giannakeas
    • 1
    • 2
  • Fanis Kalatzis
    • 2
  • Markos G. Tsipouras
    • 2
  • Dimitrios I. Fotiadis
    • 2
    Email author
  1. 1.Laboratory of Biological Chemistry, Medical SchoolUniversity of IoanninaIoanninaGreece
  2. 2.Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGreece

Personalised recommendations