Signal, Image and Video Processing

, Volume 10, Issue 4, pp 647–654 | Cite as

Automatic fire pixel detection using image processing: a comparative analysis of rule-based and machine learning-based methods

  • Tom Toulouse
  • Lucile Rossi
  • Turgay Celik
  • Moulay Akhloufi
Original Paper

Abstract

This paper presents a comparative analysis of state-of-the art image processing-based fire color detection rules and methods in the context of geometrical characteristics measurement of wildland fires. Two new rules and two new detection methods using an intelligent combination of the rules are presented, and their performances are compared with their counterparts. The benchmark is performed on approximately two hundred million fire pixels and seven hundred million non-fire pixels extracted from five hundred wildland images under diverse imaging conditions. The fire pixels are categorized according to fire color and existence of smoke; meanwhile, non-fire pixels are categorized according to the average intensity of the corresponding image. This characterization allows to analyze the performance of each rule by category. It is shown that the performances of the existing rules and methods from the literature are category dependent, and none of them is able to perform equally well on all categories. Meanwhile, a new proposed method based on machine learning techniques and using all the rules as features outperforms existing state-of-the-art techniques in the literature by performing almost equally well on different categories. Thus, this method, promises very interesting developments for the future of metrologic tools for fire detection in unstructured environments.

Keywords

Fire pixel detection Rules Machine learning  Wildland fire 

References

  1. 1.
    Celik, T.: Fast and efficient method for fire detection using image processing. ETRI J. 32(6), 881–890 (2010)Google Scholar
  2. 2.
    Celik, T., Demirel, H.: Fire detection in video sequences using a generic color model. Fire Saf. J. 44(2), 147–158 (2009)CrossRefGoogle Scholar
  3. 3.
    Celik, T., Demirel, H., Ozkaramanli, H., Uyguroglu, M.: Fire detection using statistical color model in video sequences. J. Vis. Commun. Image Represent. 18(2), 176–185 (2007). doi:10.1016/j.jvcir.2006.12.003 CrossRefGoogle Scholar
  4. 4.
    Çetin, A.E., Dimitropoulos, K., Gouverneur, B., Grammalidis, N., Günay, O., Habiboǧlu, Y.H., Töreyin, B.U., Verstockt, S.: Video fire detection review. Digit. Signal Process. 23(6), 1827–1843 (2013)CrossRefGoogle Scholar
  5. 5.
    Chen, J., He, Y., Wang, J.: Multi-feature fusion based fast video flame detection. Build. Environ. 45(5), 1113–1122 (2010). doi:10.1016/j.buildenv.2009.10.017 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, T.H., Wu, P.H., Chiou, Y.C.: An early fire-detection method based on image processing. In: International Conference on Image Processing, ICIP04, vol. 3, pp. 1707–1710. IEEE (2004)Google Scholar
  7. 7.
    Chitade, A.Z., Katiyar, S.: Colour based image segmentation using k-means clustering. Int. J. Eng. Sci. Technol. 2(10), 5319–5325 (2010)Google Scholar
  8. 8.
    Collumeau, J.F., Laurent, H., Hafiane, A., Chetehouna, K.: Fire scene segmentations for forest fire characterization: a comparative study. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 2973–2976 (2011)Google Scholar
  9. 9.
    Fawcett, T.: Roc graphs: notes and practical considerations for researchers. Mach. Learn. 31, 1–38 (2004)MathSciNetGoogle Scholar
  10. 10.
    Grishin, A.M.: Mathematical Modeling of Forest Fires and New Methods of Fighting Them. Publishing House of the Tomsk State University, Tomsk (1997)Google Scholar
  11. 11.
    Habiboǧlu, Y.H., Günay, O., Çetin, A.E.: Covariance matrix-based fire and flame detection method in video. Mach. Vis. Appl. 23(6), 1103–1113 (2011)CrossRefGoogle Scholar
  12. 12.
    Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. J. ACM 8(2), 212–229 (1961)CrossRefMATHGoogle Scholar
  13. 13.
    Horng, W.B., Peng, J.W., Chen, C.Y.: A new image-based realtime flame detection method using color analysis. In: Networking, Sensing and Control, Proceedings. IEEE, pp. 100–105 (2005)Google Scholar
  14. 14.
    Ko, B.C., Cheong, K.H., Nam, J.Y.: Fire detection based on vision sensor and support vector machines. Fire Saf. J. 44(3), 322–329 (2009)CrossRefGoogle Scholar
  15. 15.
    Liu, C.B., Ahuja, N.: Vision based fire detection. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 4, pp. 134–137. IEEE (2004)Google Scholar
  16. 16.
    Marbach, G., Loepfe, M., Brupbacher, T.: An image processing technique for fire detection in video images. Fire Saf. J. 41(4), 285–289 (2006)CrossRefGoogle Scholar
  17. 17.
    Martínez-de Dios, J.R., Merino, L., Caballero, F., Ollero, A.: Automatic forest-fire measuring using ground stations and unmanned aerial systems. Sensors 11(6), 6328–6353 (2011)CrossRefGoogle Scholar
  18. 18.
    Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975)Google Scholar
  19. 19.
    Phillips III, W., Shah, M., da Vitoria Lobo, N.: Flame recognition in video. Pattern Recogn. Lett. 23(1), 319–327 (2002)CrossRefMATHGoogle Scholar
  20. 20.
    Rossi, J.L., Chetehouna, K., Collin, A., Moretti, B., Balbi, J.H.: Simplified flame models and prediction of the thermal radiation emitted by a flame front in an outdoor fire. Combust. Sci. Technol. 182(10), 1457–1477 (2010)Google Scholar
  21. 21.
    Rossi, L., Akhloufi, M.: Dynamic fire 3D modeling using a realtime stereovision system. In: Iskander, M., Kapila, V., Karim, M.A. (eds.) Technological Developments in Education and Automation, pp. 33–38. Springer, Netherlands, Dordrecht (2010)CrossRefGoogle Scholar
  22. 22.
    Rossi, L., Akhloufi, M., Tison, Y.: On the use of stereovision to develop a novel instrumentation system to extract geometric fire fronts characteristics. Fire Saf. J. 46, 9–20 (2011)Google Scholar
  23. 23.
    Rudz, S., Chetehouna, K., Hafiane, A., Laurent, H., Sero-Guillaume, O.: Investigation of a novel image segmentation method dedicated to forest fire applications. Meas. Sci. Technol. 24(7), 075403 (2013)CrossRefGoogle Scholar
  24. 24.
    Töreyin, B.U., Dedeoǧlu, Y., Güdükbay, U., Çetin, A.E.: Computer vision based method for real-time fire and flame detection. Pattern Recogn. Lett. 27(1), 49–58 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Tom Toulouse
    • 1
    • 5
  • Lucile Rossi
    • 1
  • Turgay Celik
    • 2
    • 3
  • Moulay Akhloufi
    • 4
  1. 1.UMR CNRS 6134 SPEUniversity of CorsicaCorteFrance
  2. 2.School of Computer ScienceUniversity of the WitwatersrandJohannesburgSouth Africa
  3. 3.Electrical and Electronics EngineeringMeliksah UniversityKayseriTurkey
  4. 4.Electronics EngineeringUniversidad Tecnica Federico Santa MaríaValparaisoChile
  5. 5.Electrical and Computer EngineeringLaval UniversityQuebecCanada

Personalised recommendations