Advertisement

Signal, Image and Video Processing

, Volume 10, Issue 3, pp 593–600 | Cite as

Analysis of asynchronous cognitive radio system with imperfect sensing and bursty primary user traffic

  • Ali Özer ErcanEmail author
Original Paper

Abstract

This paper presents a theoretical analysis of the spectrum utilization levels in a cognitive radio system. We assume that the traffic of the primary network is bursty and asynchronous with the secondary network, which performs imperfect spectrum sensing. Collisions of the primary and the secondary packets are assumed to result in increased packet error probabilities. We present primary and secondary utilization levels under optimized secondary transmission periods for varying primary traffic characteristics and secondary sensing performance levels. The results are also validated by extensive Monte Carlo simulations. We find that an asynchronous cognitive radio network with imperfect spectrum sensing is feasible when optimized transmission periods are used. The effects of primary traffic’s burst pattern and secondary sensing performance are discussed.

Keywords

Cognitive radio Asynchronous opportunistic spectrum access Channel utilization 

References

  1. 1.
    Altrad, O., Muhaidat, S., Al-Dweik, A., Shami, A., Yoo, P.: Opportunistic spectrum access in cognitive radio networks under imperfect spectrum sensing. Trans. Veh. Technol. 63(2), 920–925 (2014)CrossRefGoogle Scholar
  2. 2.
    Bayhan, S., Alagöz, F.: A Markovian approach for best-fit channel selection in cognitive radio networks. Ad Hoc Netw. 12, 165–177 (2014)CrossRefGoogle Scholar
  3. 3.
    Cheng, W., Zhang, X., Zhang, H.: Full-duplex spectrum-sensing and MAC-protocol for multichannel non-time-slotted cognitive radio networks. IEEE J. Sel. Areas Commun. PP(99), 1–1 (2014). doi: 10.1109/JSAC.2014.2361078 Google Scholar
  4. 4.
    Cisco Systems Inc.: Cisco visual networking index: forecast and methodology 2013–2018. White paper (2014)Google Scholar
  5. 5.
    De Domenico, A., Strinati, E.C., Di Benedetto, M.G.: A survey on MAC strategies for cognitive radio networks. IEEE Commun. Surv. Tutor. 14(1), 21–44 (2012)CrossRefGoogle Scholar
  6. 6.
    Epitiro Ltd.: LTE real-World performance study: broadband and voice over LTE (VoLTE) quality analysis. Technical Report, TeliaSonera, Turku, Finland (2011). http://www.slideshare.net/wandalex/lte-real-world-performance-study
  7. 7.
    Feng, W.J., Jiang, R., Han, P., Liao, W., He, H.: Performance analysis of cognitive radio spectrum access with different primary user access schemes. Wirel. Pers. Commun. 75(1), 309–324 (2014)CrossRefGoogle Scholar
  8. 8.
    Geirhofer, S., Tong, L., Sadler, B.M.: Dynamic spectrum access in the time domain: modeling and exploiting white space. IEEE Commun. Mag. 45(5), 66–72 (2007)CrossRefGoogle Scholar
  9. 9.
    Hong, J., Hong, B., Ban, T.W., Choi, W.: On the cooperative diversity gain in underlay cognitive radio systems. IEEE Trans. Commun. 60(1), 209–219 (2012). doi: 10.1109/TCOMM.2011.101411.100677 CrossRefGoogle Scholar
  10. 10.
    Katayama, H., Masuyama, H., Kasahara, S., Takahashi, Y.: Effect of spectrum sensing overhead on performance for cognitive radio networks with channel bonding. J. Indus. Manag. Optim. 10(1), 21–40 (2014)Google Scholar
  11. 11.
    Lee, J., Wang, H., Andrews, J., Hong, D.: Outage probability of cognitive relay networks with interference constraints. IEEE Trans. Wirel. Commun. 10(2), 390–395 (2011). doi: 10.1109/TWC.2010.120310.090852 CrossRefGoogle Scholar
  12. 12.
    Liu, G., Zhu, X., Hanzo, L.: Dynamic spectrum sharing models for cognitive radio aided ad hoc networks and their performance analysis. In: Proceedings of IEEE GLOBECOM conference, pp. 1–5. IEEE (2011)Google Scholar
  13. 13.
    Oklander, B., Sidi, M.: On cognitive processes in cognitive radio networks. Wirel. Netw. 20(2), 319–330 (2014)CrossRefGoogle Scholar
  14. 14.
    Parsaeefard, S., Sharafat, A.: Robust worst-case interference control in underlay cognitive radio networks. IEEE Trans. Veh. Technol. 61(8), 3731–3745 (2012). doi: 10.1109/TVT.2012.2205719 CrossRefGoogle Scholar
  15. 15.
    Shah, G.A., Akan, O.B.: Performance analysis of CSMA-based opportunistic medium access protocol in cognitive radio sensor networks. Ad Hoc Netw. 15(4), 4–13 (2014)CrossRefGoogle Scholar
  16. 16.
    Wang, B., Ji, Z., Liu, K.R., Clancy, T.C.: Primary-prioritized Markov approach for dynamic spectrum allocation. IEEE Trans. Wirel. Commun. 8(4), 1854–1865 (2009)CrossRefGoogle Scholar
  17. 17.
    Wang, B., Liu, K.J.R.: Advances in cognitive radio networks: a survey. IEEE J. Sel. Top. Signal Process. 5(1), 5–23 (2011)CrossRefGoogle Scholar
  18. 18.
    Wong, E., Foh, C.: Analysis of cognitive radio spectrum access with finite user population. IEEE Commun. Lett. 13(5), 294–296 (2009)CrossRefGoogle Scholar
  19. 19.
    Zahmati, A., Fernando, X., Grami, A.: Steady-state Markov chain analysis for heterogeneous cognitive radio networks. In: Proceedings of the IEEE Sarnoff Symposium, pp. 1–5 (2010)Google Scholar
  20. 20.
    Zhao, H., Gao, H., Liang, X., Mu, X.: Joint design of spectrum sensing and data transmission for cognitive radio networks. In: Proceedings of 6th International Conference on Biomedical Engineering and Informatics, pp. 792–796. IEEE (2013). doi: 10.1109/BMEI.2013.6747048

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringÖzyeğin UniversityÇekmeköy, IstanbulTurkey

Personalised recommendations