Signal, Image and Video Processing

, Volume 10, Issue 2, pp 335–342 | Cite as

Orthogonal planar search (OPS) for coronary artery centerline extraction

Original Paper

Abstract

In this paper, we investigate orthogonal planar search (OPS) for coronary artery centerline extraction to assist in coronary artery diseases diagnosis. The search mechanism exploits a data-driven algorithm to extract the centerline. Firstly, the best representation of vessel cross section on orthogonal planar is determined. Then, the center of gravity from the crosssection is computed as centerline point iteratively. Branching detection and termination are invoked in this proposed method. We demonstrate the results quantitatively and qualitatively. In addition, we benchmark OPS with three state-of-the-art methods and illustrate the comparison results in radar chart (also known as spider chart). Finally, we discuss limitations of OPS and future works.

Keywords

Computed tomography angiography (CTA) Centerline extraction Orthogonal 

References

  1. 1.
    Tang, S., Chan, C.S.: A neighbourhood search feedback for coronary artery centerline tracking. In: MVA2013 IAPR International Conference on Machine Vision Applications, pp. 85–88, May 20–23 (2013)Google Scholar
  2. 2.
    Goldenberg, R., et al.: Computer-aided simple triage (CAST) for coronary CT angiography (CCTA). Int. J. Comput Assist. Radiol. Surg. 7(6), 819–827 (2012)CrossRefGoogle Scholar
  3. 3.
    Zambal, S., Hladuvka, J., Kanitsar, A., Bühler, K.: Shape and appearance models for automatic coronary artery tracking. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1420 (2008). Accessed 9 Dec 2010
  4. 4.
    Yang, G., et al.: Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography. Int. J. Cardiovasc. Imaging 28(4), 921–933 (2012)CrossRefGoogle Scholar
  5. 5.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)CrossRefGoogle Scholar
  6. 6.
    Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2), 81–121 (2004)CrossRefGoogle Scholar
  7. 7.
    Bouraoui, B., Ronse, C., Baruthio, J., Passat, N., Germain, P.: 3D segmentation of coronary arteries based on advanced mathematical morphology techniques. Comput. Med. Imaging Graph. 34(5), 377–387 (2010)CrossRefGoogle Scholar
  8. 8.
    Chen, Z., Molloi, S.: Automatic 3D vascular tree construction in CT angiography. Comput. Med. Imaging Graph. 27(6), 469–479 (2003)CrossRefGoogle Scholar
  9. 9.
    Xu, Y., Liang, G., Hu, G., Yang, Y., Geng, J., Saha, P.K.: Quantification of coronary arterial stenoses in CTA using fuzzy distance transform. Comput. Med. Imaging Graph. 36(1), 11–24 (2012)CrossRefGoogle Scholar
  10. 10.
    Isola, A., Metz, C., Schaap, M., Klein, S., Grass, M., Niessen, W.J.: Cardiac motion-corrected iterative cone-beam CT reconstruction using a semi-automatic minimum cost path-based coronary centerline extraction. Comput. Med. Imaging Graph. 36(3), 215–226 (2012)CrossRefGoogle Scholar
  11. 11.
    Mueller, D., Maeder, A.: Robust semi-automated path extraction for visualising stenosis of the coronary arteries. Comput. Med. Imaging Graph. 32(6), 463–475 (2008)CrossRefGoogle Scholar
  12. 12.
    Schaap, M., Metz, C., van Walsum, T., van der Giessen, A., Weustink, A., Mollet, N., Bauer, C., Bogunovi, H., Castro, C., Deng, X., Dikici, E., O’Donnell, T., Frenay, M., Friman, O., Hoyos, M., Kitslaar, P., Krissian, K., Khnel, C., Luengo-Oroz, M., Orkisz, M., Smedby, O., Styner, M., Szymczak, A., Tek, H., Wang, C., Warfield, S., Zambal, S., Zhang, Y., Krestin, G., Niessen, W.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med. Image Anal. 13(5), 701–714 (2009)Google Scholar
  13. 13.
    Bauer, C., Bischof, H.: Edge based tube detection for coronary artery centerline extraction. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1403 (2008). Accessed 9 Dec 2010
  14. 14.
    Castro, C., Luengo-Oroz, M., Santos, A., Ledesma-Carbayo, M.: Coronary artery tracking in 3D cardiac CT images using local morphological reconstruction operators. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1436 (2008). Accessed 9 Dec 2010
  15. 15.
    Dikici, E., O’Donnell, T., Grady, L., Setser, R., White, R.D.: Coronary artery centerline tracking using axial symmetries. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1425 (2008). Accessed 9 Dec 2010
  16. 16.
    Friman, O., Kühnel, C., Peitgen, H.-O.: Coronary centerline extraction using multiple hypothesis tracking and minimal paths. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1433 (2008). Accessed 9 Dec 2010
  17. 17.
    Gülsün, M.A., Tek, H.: Robust vessel tree modeling. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 602–611. Springer (2008)Google Scholar
  18. 18.
    Krissian, K., Bogunovic, H., Pozo, J., Villa-Uriol, M., Frangi, A.: Minimally interactive knowledge-based coronary tracking in CTA using a minimal cost path. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1435 (2008). Accessed 9 Dec 2010
  19. 19.
    Metz, C., Schaap, M., Van Walsum, T., Niessen, W.: Two point minimum cost path approach for CTA coronary centerline extraction. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1510 (2008). Accessed 9 Dec 2010
  20. 20.
    Szymczak, A.: Vessel tracking by connecting the dots. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1406 (2008). Accessed 9 Dec 2010
  21. 21.
    Tek, H., Gulsun, M.A., Laguitton, S., Grady, L., Lesage, D., Funka-Lea, G.: Automatic coronary tree modeling. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1426 (2008). Accessed 9 Dec 2010
  22. 22.
    Wang, C., Smedby, Ö.: Coronary artery segmentation and skeletonization based on competing fuzzy connectedness tree. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 311–318. Springer (2007)Google Scholar
  23. 23.
    Zhang, Y., Chen, K., Wong, S.: 3D interactive centerline extraction. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1417 (2008). Accessed 9 Dec 2010
  24. 24.
    Hoyos, M.H., Zuluaga, M.A., Lozano, M., Prieto, J.C., Douek, P.C., Magnin, I.E., Orkisz, M.: Coronary centerline tracking in CT images with use of an elastic model and image moments. In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1401 (2008). Accessed 9 Dec 2010
  25. 25.
    Kitslaar, P.H., Frenay, M., Oost, E., Dijkstra, J., Stoel, B., Reiber, J.H.: Connected component and morpholgy based extraction of arterial centerlines of the heart (cocomobeach). In: MICCAI Workshop Grand Challenge Coronary Artery Tracking, The MIDAS Journal. http://hdl.handle.net/10380/1460 (2008). Accessed 9 Dec 2010
  26. 26.
    Mohan, V., Sundaramoorthi, G., Tannenbaum, A.: Tubular surface segmentation for extracting anatomical structures from medical imagery. IEEE Trans. Med. Imaging 29(12), 1945–1958 (2010)CrossRefGoogle Scholar
  27. 27.
    Cetin, S., Demir, A., Yezzi, A., Degertekin, M., Unal, G.: Vessel tractography using an intensity based tensor model with branch detection. IEEE Trans. Med. Imaging 32(2), 348–363 (2013)CrossRefGoogle Scholar
  28. 28.
    Leschka, S., et al.: Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur. Heart J. 26(15), 1482–1487 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Center of Image and Signal Processing, Faculty of Computer Science and Information TechnologyUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations