Advertisement

Signal, Image and Video Processing

, Volume 8, Supplement 1, pp 41–48 | Cite as

Graph-regularized 3D shape reconstruction from highly anisotropic and noisy images

  • Christian Widmer
  • Stephanie Heinrich
  • Philipp Drewe
  • Xinghua Lou
  • Shefali Umrania
  • Gunnar Rätsch
Original Paper

Abstract

Analysis of microscopy images can provide insight into many biological processes. One particularly challenging problem is cellular nuclear segmentation in highly anisotropic and noisy 3D image data. Manually localizing and segmenting each and every cellular nucleus is very time-consuming, which remains a bottleneck in large-scale biological experiments. In this work, we present a tool for automated segmentation of cellular nuclei from 3D fluorescent microscopic data. Our tool is based on state-of-the-art image processing and machine learning techniques and provides a user-friendly graphical user interface. We show that our tool is as accurate as manual annotation and greatly reduces the time for the registration.

Keywords

Cell nuclei detection Shape reconstruction 3D fluorescent microscopic data Nuclear segmentation 

Notes

Acknowledgments

We gratefully acknowledge core funding from the Sloan Kettering Institute (to G.R.), from the Ernst Schering foundation (to S.H.) and from the Max Planck Society (to G.R. and S.H.). Part of this work was done while C.W., S.H., P.D. and G.R. were at the Friedrich Miescher Laboratory of the Max Planck Society and while C.W. was at the Machine Learning Group at TU-Berlin.

Supplementary material

11760_2014_694_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (pdf 2152 KB)
11760_2014_694_MOESM2_ESM.pdf (137 kb)
Supplementary material 2 (pdf 137 KB)

References

  1. 1.
    Santella, A., Du, Z., Nowotschin, S., Hadjantonakis, A., Bao, Z.: A hybrid blob-slice model for accurate and efficient detection of fluorescence labeled nuclei in 3D. BMC Bioinformatics 11(1), 580–2010 (2010)CrossRefGoogle Scholar
  2. 2.
    Li, G., Liu, T., Tarokh, A., Nie, J., Guo, L., Mara, A., Holley, S., Wong, S.: 3D cell nuclei segmentation based on gradient flow tracking. BMC Cell Biol. 8(1), 40 (2007)CrossRefGoogle Scholar
  3. 3.
    Coelho, L.P., Shariff, A., Murphy, R.F.: Nuclear segmentation in microscope cell images: a hand-segmented dataset and comparison of algorithms. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro, (2009)Google Scholar
  4. 4.
    Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(2), 195–215 (2007)CrossRefGoogle Scholar
  5. 5.
    Dufour, A., Shinin, V., Tajbakhsh, S., et al.: Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Trans. Image Process. 14(9), 13961410 (2005)CrossRefGoogle Scholar
  6. 6.
    Srinivasa, G., Fickus, M.C., Guo, Y., et al.: Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Trans. Image Process. 18(8), 1817–1829 (2009)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient ND image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)CrossRefGoogle Scholar
  8. 8.
    Al-Kofahi, Y., Lassoued, W., Lee, W., et al.: Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng. 57(4), 841–852 (2010)CrossRefGoogle Scholar
  9. 9.
    Heinrich, S., Geissen, E., Kamenz, J., Trautmann, S., Widmer, C., Drewe, P., Knop, M., Radde, N., Hasenauer, J., Hauf, S.: Determinants of robustness in spindle assembly checkpoint signalling. Nat. Cell Biol. 15(11), 1328–1339 (2013)CrossRefGoogle Scholar
  10. 10.
    Pécot, T., Singh, S., Caserta, E., Huang, K., Machiraju, R., Leone, G.: Non parametric cell nuclei segmentation based on a tracking over depth from 3D fluorescence confocal images. In 9th IEEE International Symposium on Biomedical Imaging (ISBI), 170–173, (2012)Google Scholar
  11. 11.
    Uzunbas, M.G., Soldea, O., Unay, D., Cetin, M., Unal, G., Ercil, A., Ekin, A.: Coupled nonparametric shape and moment-based intershape pose priors for multiple basal ganglia structure segmentation. IEEE Trans. Med. Imaging 29(12), 1959–1978 (2010)CrossRefGoogle Scholar
  12. 12.
    Stegmaier, J., Otte, J.C., Kobitski, A., Bartschat, A., Garcia, A., Nienhaus, G.U., Strähle, U., Mikut, R.: Fast segmentation of stained nuclei in terabyte-scale, time resolved 3D microscopy image stacks. PloS One 9(2), e90036 (2014)CrossRefGoogle Scholar
  13. 13.
    Svoboda, D., Kozubek, M., Stejskal, S.: Generation of digital phantoms of cell nuclei and simulation of image formation in 3D image cytometry. Cytometry A 75(6), 494–5099 (2009)CrossRefGoogle Scholar
  14. 14.
    Lou, X., Kang, M., Xenopoulos, P., Muñoz-Descalzo, S., Hadjantonakis, A.K.: A rapid and efficient 2D/3D nuclear segmentation method for analysis of early mouse embryo and stem cell image data. Stem Cell Reports 2(3), 382–397 (2014)CrossRefGoogle Scholar
  15. 15.
    Mitchell I.M.: A toolbox of level set methods. In UBC Department of Computer Science Technical Report, TR-2007-11, (2007)Google Scholar
  16. 16.
    Wienert, S., Heim, D., Saeger, K., Stenzinger, A., Beil, M., Hufnagl, P., Dietel, M., Denkert, C., Klauschen, F.: Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach. Sci. Rep. 2, 503 (2012)CrossRefGoogle Scholar
  17. 17.
    Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel methods. J. Mach. Learn. Res. 6(1), 615–637 (2005)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Lou, X., Koethe, U., Wittbrodt, J., Hamprecht, F. A.: Learning to segment dense cell nuclei with shape prior. In CVPR (2012)Google Scholar
  19. 19.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River (2008)Google Scholar
  20. 20.
    Lou, X., Koethe, U., Wittbrodt, J., Hamprecht, F.A.: Improved automatic detection and segmentation of cell nuclei in histopathology images. In IEEE on Computer Vision and Pattern Recognition (CVPR)(2012)Google Scholar
  21. 21.
    Weisstein, E. W.: “Ellipse”. From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/Ellipse.html
  22. 22.
    Rosin, P.L.: Assessing error of fit functions for ellipses. Graph. Models Image Process. 58(5), 494–502 (1996)CrossRefGoogle Scholar
  23. 23.
    Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)CrossRefGoogle Scholar
  24. 24.
    Newcomb, S.: A generalized theory of the combination of observations so as to obtain the best result. Am. J. Math. 8, 343–366 (1886)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Huber, P.J.: The 1972 wald lecture robust statistics: a review. Ann. Math. Stat. 43(4), 1041–1067 (1972)CrossRefzbMATHGoogle Scholar
  26. 26.
    Vapnik, V.: The Nature of Statistical Learning Theory. Volume 8 of Statistics for Engineering and Information Science. Springer, Berlin (1995)Google Scholar
  27. 27.
    Smola, A. J., Schölkopf, B.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Volume 64 of Adaptive Computation and Machine Learning. MIT Press, Cambridge (2001)Google Scholar
  28. 28.
    Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  30. 30.
    Widmer, C., Kloft, M., Görnitz, N., Rätsch, G.: Efficient training of graph-regularized multitask SVMs. In ECML2012, pp. 633–647, Springer, Berlin (2012)Google Scholar
  31. 31.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24.6, 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Elsasser, W.M.: Outline of a theory of cellular heterogeneity. In Proceedings of the National Academy of Sciences, 5126–5129, (1984)Google Scholar
  33. 33.
    Li, G., Liu, T., Tarokh, A., et al.: 3D cell nuclei segmentation. BMC Cell Biol. 8(1), 40 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Christian Widmer
    • 1
  • Stephanie Heinrich
    • 2
  • Philipp Drewe
    • 1
  • Xinghua Lou
    • 1
  • Shefali Umrania
    • 1
  • Gunnar Rätsch
    • 1
  1. 1.Sloan Kettering InstituteNew YorkUSA
  2. 2.Institute for BiochemistryETH ZurichZurichSwitzerland

Personalised recommendations