Advertisement

Signal, Image and Video Processing

, Volume 9, Issue 7, pp 1543–1548 | Cite as

Iterative bilateral filter for Rician noise reduction in MR images

  • R. Riji
  • Jeny Rajan
  • Jan Sijbers
  • Madhu S. NairEmail author
Original Paper

Abstract

Noise removal from magnetic resonance images is important for further processing and visual analysis. Bilateral filter is known for its effectiveness in edge-preserved image denoising. In this paper, an iterative bilateral filter for filtering the Rician noise in the magnitude magnetic resonance images is proposed. The proposed iterative bilateral filter improves the denoising efficiency, preserves the fine structures and also reduces the bias due to Rician noise. The visual and diagnostic quality of the image is well preserved. The quantitative analysis based on the standard metrics like peak signal-to-noise ratio and mean structural similarity index matrix shows that the proposed method performs better than the other recently proposed denoising methods for MRI.

Keywords

Bilateral filtering Magnetic resonance imaging Rician noise Image denoising 

References

  1. 1.
    Wright, G.: Magnetic resonance imaging. IEEE Signal Process. Mag. 1, 56–66 (1997)CrossRefGoogle Scholar
  2. 2.
    Nishimura, D.G.: Principles of Magnetic Resonance Imaging. Stanford University, Stanford, CA (2010)Google Scholar
  3. 3.
    Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., Garciá-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non-local means. Med. Image Anal. 12, 514–523 (2008)CrossRefGoogle Scholar
  4. 4.
    Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S. P., Barillo, C.: Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: applications to DT-MRI. In: Proceedings of MICCAI, pp. 171-179 (2008)Google Scholar
  5. 5.
    Manjón, J.V., Coupé, P., Martí-Bonmatí, L., Collins, D.L., Robles, M.: Adaptive non local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31, 192–203 (2010)CrossRefGoogle Scholar
  6. 6.
    Sijbers, J., den Dekker, A.J., Van der Linden, A., Verhoye, M., Van Dyck, D.: Adaptive anisotropic noise filtering for magnitude MR data. Magn. Reson. Imaging 17, 1533–1539 (1999)CrossRefGoogle Scholar
  7. 7.
    Samsonov, A.A., Johnson, C.R.: Noise adaptive nonlinear diffusion filtering of MR images with spatially varying noise levels. Magn. Reson. Med. 52, 798–806 (2004)CrossRefGoogle Scholar
  8. 8.
    Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)CrossRefGoogle Scholar
  9. 9.
    You, Y.L., Kaveh, M.: Fourth order partial differential equations for noise removal. IEEE Trans. Image Process. 9, 1723–1730 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12, 1579–1590 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Basu, S., Fletcher, T., Whitaker, R.: Rician noise removal in diffusion tensor MRI. In: Proceedings of MICCAI, pp. 117-1-25 (2006)Google Scholar
  12. 12.
    Aja-Fernández, S., Alberola-López, C., Westin, C.F.: Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. IEEE Trans. Image Process. 17, 1383–1398 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Krissian, K., Aja-Fernández, S.: Noise driven anisotropic diffusion filtering of MRI. IEEE Trans. Image Process. 18, 2265–2274 (2009)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Anand, C.S., Sahambi, J.S.: MRI denoising using bilateral filter in redundant wavelet domain. TENCON (2008)Google Scholar
  15. 15.
    Pizurica, A., Philips, W., Lemahiew, I.: Acheroyet, M.: A versatile wavelet domain filtration technique for medical imaging. IEEE Trans. Med. Imaging 22, 323–331 (2003)Google Scholar
  16. 16.
    Nowak, R.D.: Wavelet based Rician noise removal for magnetic resonance images. IEEE Trans. Image Process. 10, 1408–1419 (1999)CrossRefGoogle Scholar
  17. 17.
    Rajan, J., Jeurissen, B., Verhoye, M., Van Audekerke, J., Sijbers, J.: Maximum likelihood estimation-based denoising of magnetic resonance images using restricted local neighborhoods. Phys. Med. Biol. 56, 5221–5234 (2011)CrossRefGoogle Scholar
  18. 18.
    He, L., Greenshields, I.R.: A nonlocal maximum likelihood estimation method for Rician noise reduction in MR images. IEEE Trans. Med. Imaging 28, 165–172 (2009) Google Scholar
  19. 19.
    Rajan, J., Van Audekerke, J., Van der Linden, A., Verhoye M., Jan Sijbers.: An adaptive non local maximum likelihood estimation method for denoising magnetic resonance images. In: International Symposium on Biomedical Imaging, pp. 1136–1139 (2012)Google Scholar
  20. 20.
    Sijbers, J., den Dekker, A.J., Van Audekerke, J., Verhoye, M., Van Dyck, D.: Estimation of the noise in magnitude MR images. Magn. Reson. Imaging 16, 87–90 (1998)CrossRefGoogle Scholar
  21. 21.
    Rice, S.O.: Mathematical analysis of random noise. Bell Syst. Tech. J. 23, 282–332 (1944)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34, 910–914 (1995)CrossRefGoogle Scholar
  23. 23.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of 6th International Conference on Computer Vision, pp. 839-846 (1998)Google Scholar
  24. 24.
    Smith, S.M., Brady, J.M.: Susan—a new approach to low level image processing. Int. J. Comput. Vis. 23, 45–78 (1997)CrossRefGoogle Scholar
  25. 25.
    Elad, M.: On the origin of the bilateral filter and ways to improve it. IEEE Trans. Image Process. 11, 1141–1151 (2002)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Zhang, M., Gunturk, B.K.: Multiresolution bilateral filtering for Image denoising. IEEE Trans. Image Process. 17, 2324–2333 (2008)Google Scholar
  27. 27.
    Rajan, J., Poot, D., Juntu, J., Sijbers, J.: Noise measurement from magnitude MRI using local estimates of variance and skewness. Phys. Med. Biol. 55, N441–N449 (2010)CrossRefGoogle Scholar
  28. 28.
    Sijbers, J., den Dekker, A.J., Scheunders, P., Van Dyck, D.: Maximum likelihood estimation of Rician distribution parameters. IEEE Trans. Med. Imaging 17(3), 357–361 (1998)CrossRefGoogle Scholar
  29. 29.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 4, 600–612 (2004)CrossRefGoogle Scholar
  30. 30.
    Cocosco, C.A., Kollokian, V., Kwan, R. K.-S, Evans, A. C.: Brainweb: online interface to a 3D MRI simulated brain database. NeuroImage 5, S425 (1997). http://www.bic.mni.mcgill.ca/brainweb/

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • R. Riji
    • 1
  • Jeny Rajan
    • 2
    • 3
  • Jan Sijbers
    • 2
  • Madhu S. Nair
    • 1
    Email author
  1. 1.Department of Computer ScienceUniversity of KeralaKariavattom, ThiruvananthapuramIndia
  2. 2.iMinds-Vision Lab, Department of PhysicsUniversity of AntwerpAntwerpBelgium
  3. 3.Image and Speech Processing Lab, Department of Computer Science and EngineeringNational Institute of TechnologySurathkalIndia

Personalised recommendations