Signal, Image and Video Processing

, Volume 9, Issue 7, pp 1549–1558 | Cite as

Localization algorithms for multilateration (MLAT) systems in airport surface surveillance

  • Ivan A. Mantilla-Gaviria
  • Mauro Leonardi
  • Gaspare GalatiEmail author
  • Juan V. Balbastre-Tejedor
Original Paper


We present a general scheme for analyzing the performance of a generic localization algorithm for multilateration (MLAT) systems (or for other distributed sensor, passive localization technology). MLAT systems are used for airport surface surveillance and are based on time difference of arrival measurements of Mode S signals (replies and 1,090 MHz extended squitter, or 1090ES). In the paper, we propose to consider a localization algorithm as composed of two components: a data model and a numerical method, both being properly defined and described. In this way, the performance of the localization algorithm can be related to the proper combination of statistical and numerical performances. We present and review a set of data models and numerical methods that can describe most localization algorithms. We also select a set of existing localization algorithms that can be considered as the most relevant, and we describe them under the proposed classification. We show that the performance of any localization algorithm has two components, i.e., a statistical one and a numerical one. The statistical performance is related to providing unbiased and minimum variance solutions, while the numerical one is related to ensuring the convergence of the solution. Furthermore, we show that a robust localization (i.e., statistically and numerically efficient) strategy, for airport surface surveillance, has to be composed of two specific kind of algorithms. Finally, an accuracy analysis, by using real data, is performed for the analyzed algorithms; some general guidelines are drawn and conclusions are provided.


Localization algorithms Multilateration Time difference of arrival Airport surface surveillance Air traffic control 



Mr. Ivan A. Mantilla-Gaviria has been supported by a FPU scholarship (AP2008-03300) from the Spanish Ministry of Education. Moreover, the authors are grateful to ERA A.S. who supplied the recording of TDOA measurements.


  1. 1.
    EUROCAE-WG-41: ED-117, MOPS for Mode S multilateration systems for use in advanced surface movement guidance and control systems (A-SMGCS). In: The European Organisation for Civil Aviation Equipment (EUROCAE) (November 2003)Google Scholar
  2. 2.
    EUROCAE-WG-70: ED-142, technical specification for wide area multilateration (WAM) systems. In: The European Organisation for Civil Aviation Equipment (EUROCAE) (September 2010)Google Scholar
  3. 3.
    Galati, G., Genderen, P.V.: Proceedings Book of the Tyrrhenian International Workshop on Digital Communications, Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV’11), Capri, Italy (2011)Google Scholar
  4. 4.
    Galati, G., Genderen, P.V.: Proceedings Book of the Tyrrhenian International Workshop on Digital Communications, Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV’08), Capri, Italy (2008)Google Scholar
  5. 5.
    Galati, G., Zellweger, A.: Proceedings Book of the ATM 2002 Advanced Workshop. Capri, Italy (2002)Google Scholar
  6. 6.
    Hahn, W.R., Tretter, S.A.: Optimum processing for delay-vector estimation in passive signal arrays. IEEE Trans. Inf. Theory IT–19(5), 608–614 (1973)CrossRefGoogle Scholar
  7. 7.
    Torrieri, D.J.: Statistical theory of passive location systems. IEEE Trans. Aerosp. Electron. Syst. AES–20, 183–198 (1984)CrossRefGoogle Scholar
  8. 8.
    Levanon, N.: Lowest GDOP in 2-D scenarios. IEE Proc. Radar Sonar Navig. 147(3), 149–155 (2000)CrossRefGoogle Scholar
  9. 9.
    Galati, G., Leonardi, M., Mantilla-Gaviria, I.A., Tosti, M.: Lower bounds of accuracy for enhanced mode-s distributed sensor networks. IET Radar Sonar Navig. 6(3), 190–201 (2012). doi: 10.1049/iet-rsn.2011.0197 CrossRefGoogle Scholar
  10. 10.
    Smith, J.O., Abel, J.S.: Closed-form least-squares source location estimation from range-difference measurements. IEEE Trans. Acoust. Speech Signal Process. ASSP–35(12), 1661–1669 (1987)CrossRefGoogle Scholar
  11. 11.
    Mantilla-Gaviria, I.A., Leonardi, M., Galati, G., Balbastre-Tejedor, J.V., Reyes, E.D.L.: Efficient location strategy for airport surveillance using Mode-S multilateration systems. Int. J. Microw. Wireless Technol. 4(2), 209–216 (2012). doi: 10.1017/S1759078712000104 CrossRefGoogle Scholar
  12. 12.
    Romero, L., Mason, J.: Evaluation of direct and iterative methods for overdetermined systems of TOA geolocation equations. IEEE Trans. Aerosp. Electron. Syst. 47(2), 1213–1229 (2011)CrossRefGoogle Scholar
  13. 13.
    Yang, K., An, J., Bu, X., Sun, G.: Constrained total least-squares location algorithm using time-difference-of-arrival measurements. IEEE Trans. Veh. Technol. 59(3), 1558–1562 (2010)CrossRefGoogle Scholar
  14. 14.
    Weng, Y., Xiao, W., Xie, L.: Total least squares method for robust source localization in sensor networks using TDOA measurements. Int. J. Distrib. Sens. Netw. 2011 (Article ID 172902) (2011). doi: 10.1155/2011/172902
  15. 15.
    Mantilla-Gaviria, I.A., Leonardi, M., Galati, G., Balbastre-T, J.V., Reyes, E.D.L.: Improvement of multilateration (MLAT) accuracy and convergence for airport surveillance. In: Tyrrhenian International Workshop on Digital Communications—Enhanced Surveillance of Aircraft and Vehicles (ESAV’11), Capri, Italy (September 12–14, 2011)Google Scholar
  16. 16.
    Mantilla-Gaviria, I.A., Leonardi, M., Balbastre-Tejedor, J.V., Reyes, Edl: On the application of singular value decomposition and Tikhonov regularization to ill-posed problems in hyperbolic passive location. Math. Comput. Model. 57(7–8), 1999–2008 (2013). doi: 10.1016/j.mcm.2012.03.004 CrossRefGoogle Scholar
  17. 17.
    El-Rabbany, A.: Introduction to GPS: The Global Positioning System, 2nd edn. Artech House, Boston, USA (2006)Google Scholar
  18. 18.
    Trees, HLv: Detection, Estimation and Modulation Theory, Part I. Wiley, New York (2001)CrossRefGoogle Scholar
  19. 19.
    Foy, W.H.: Position-location solution by Taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst. AES–12(2), 187–194 (1976) Google Scholar
  20. 20.
    Smith, J.O., Abel, J.S.: The spherical interpolation method of source localization. IEEE J. Ocean. Eng. OE–12(1), 246–252 (1987)CrossRefGoogle Scholar
  21. 21.
    Friedlander, B.: A passive localization algorithm and its accuracy analysis. IEEE J. Ocean. Eng. OE–12(1), 234–245 (1987). doi: 10.1109/JOE.1987.1145216 CrossRefGoogle Scholar
  22. 22.
    Schau, H.C., Robinson, A.Z.: Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. IEEE Trans. Acoust. Speech Signal Process. ASSP–35(8), 1223–1225 (1987)CrossRefGoogle Scholar
  23. 23.
    Chan, Y.T., Ho, K.C.: A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 42(8), 1905–1915 (1994)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Schmidt, R.O.: A new approach to geometry of range difference location. IEEE Trans. Aerosp. Electron. Syst. AES–8(6), 821–835 (1972)CrossRefGoogle Scholar
  25. 25.
    Geyer, M., Daskalakis, A.: Solving passive multilateration equations using Bancroft’s algorithm. In: Digital Avionics Systems Conference, pp. F41/41–F41/48, Bellevue, WA, USA (1998)Google Scholar
  26. 26.
  27. 27.
    Bancroft, S.: An algebraic solution of the GPS equations. IEEE Trans. Aerosp. Electron. Syst. AES–21(7), 56–59 (1985)CrossRefGoogle Scholar
  28. 28.
    Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  29. 29.
    Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation. Wiley, New York (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Ivan A. Mantilla-Gaviria
    • 1
  • Mauro Leonardi
    • 2
  • Gaspare Galati
    • 2
    Email author
  • Juan V. Balbastre-Tejedor
    • 1
  1. 1.Instituto ITACAUniversidad Politécnica de ValenciaEdificio 8G, Acceso B, ValenciaSpain
  2. 2.DIETor Vergata UniversityRomeItaly

Personalised recommendations