Signal, Image and Video Processing

, Volume 9, Issue 7, pp 1531–1542

Robust image-adaptive watermarking using an adjustable dynamic strength factor

Original Paper


This paper presents a novel spread spectrum based image-adaptive watermarking technique where selective embedding of watermark has been done in small building blocks of the image, depending upon the respective entropies of the blocks. Novelty of this method lies in the flexibility of its strength factor which can be adjusted easily in order to obtain a required level of visual quality of the watermarked image in terms of PSNR. Easy adjustability of the strength factor has helped in experimentally demonstrating the inverse relationship between imperceptibility and robustness of the watermark. Positions of embedded blocks, means of low-frequency wavelet coefficients and size of watermark have been used as side information for decoding of the watermark. Applied technique has shown exceptional resistance to some of the common watermarking attacks such as JPEG compression, median filtering, Gaussian filtering and AWGN noise attacks.


Image-adaptive watermarking Robust watermarking Information security Information hiding 


  1. 1.
    Podilchuk, C.I., Zeng, W.: Image-adaptive watermarking using visual models. IEEE J. Sel. Areas Commun. 16(4), 525–539 (1998)CrossRefGoogle Scholar
  2. 2.
    Cox, I.J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  3. 3.
    Wolfgang, R.B., Podilchuk, C.I.: Perceptual watermarks for digital images and video. Proc. IEEE 87(7), 1108–1126 (1999)CrossRefGoogle Scholar
  4. 4.
    Watson, A.B.: DCT quantization matrices optimized for individual images. In: Proceedings of SPIE: Human Vision, Visual Processing and Digital Display IV vol. 1913, pp. 202–216 (1993)Google Scholar
  5. 5.
    Watson, A.B., Yang, G.Y., Solomon, J.A., Villasenor, J.: Visibility of wavelet quantization noise. IEEE Trans. Image Process. 6(8), 1164–1175 (1997)CrossRefGoogle Scholar
  6. 6.
    Watson, A.B., Borthwick, R., Taylor, M.: Image quality and entropy masking. In: Proceedings SPIE, San Diego, California vol. 3016, pp. 295–300 (1997)Google Scholar
  7. 7.
    Barni, M., Bartolini, F., Pive, A.: Improved wavelet-based watermarking through pixel-wise masking. IEEE Trans. Image Process. 5(10), 783–91 (2001)CrossRefGoogle Scholar
  8. 8.
    Chen, D.-Y., Ouhyoung, M., Wu, J.-L.: A shift-resisting public watermark system for protecting image processing software. IEEE Trans. Consum. Electron. 46(3), 404–414 (2000) Google Scholar
  9. 9.
    Zhang, X.-P., Li, K., Wang, X.: A novel look-up table design method for data hiding with reduced distortion. IEEE Trans. Circuits Syst. Video Technol. 18(6), 769–776 (2008)Google Scholar
  10. 10.
    Huang, S., Zhang, W., Wei, P., Liu, Z.: A robust watermarking scheme based on mean quantization. In: 3rd IEEE International Conference on Industrial Electronics and Applications, (ICIEA 2008), pp. 264–267. Singapore (2008)Google Scholar
  11. 11.
    Rahimi, F., Rabani, H.: A visually imperceptible and robust image watermarking scheme in contourlet domain. In: Proceedings of IEEE ICSP, pp. 1817–1820 (2010)Google Scholar
  12. 12.
    Akhaee, M.A., Sahraeian, S.M.E., Sankur, B., Marvasti, F.: Robust scaling based image watermarking using maximum-likelihood decoder with optimum strength factor. IEEE Trans. Multimed. 11(5), 822–833 (2009)CrossRefGoogle Scholar
  13. 13.
    Liu, N-s, Guo, D-h: Watermarking scheme of colour image based on chaotic sequences. Optoelectron. Lett. 5(3), 227–231 (2009)CrossRefGoogle Scholar
  14. 14.
    Akhaee, M.A., Sahraeian, S.M.E., Marvasti, F.: Contourlet based image watermarking using optimum detector in a noisy Environment. IEEE Trans. Image Process. 19(4), 967–980 (2010)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Jadhav, S.D., Bhalchandra, S.: Blind source separation based robust digital image watermarking using wavelet domain embedding. In: IEEE Conference on Cybernetics and Intelligent Systems, pp. 162–167 (2010)Google Scholar
  16. 16.
    Akhbari, B., Ghaemmaghami, S.: Watermarking of still images using multiresolution singular value decomposition. In: Proceedings of IEEE International Symposium on Intelligent Signal Processing and Communication Systems, pp. 325–328 (2005)Google Scholar
  17. 17.
    Moon, H.S., You, T., Sohn, M.H., Kim, H.S., Jang, D.S.: Expert system for low frequency adaptive image watermarking: Using psychological experiments on human image perception. Expert Syst. Appl. 32, 674–686 (2007)CrossRefGoogle Scholar
  18. 18.
    Gonzalez, R. C., Woods, R. E., Eddins, S. L.: Digital Image Processing Using MATLAB, Ch. 8, pp. 301–302. Pearson Education Inc, New Delhi (2009)Google Scholar
  19. 19.
    Kalantari, N.K., Ahadi, S.M., Vafadust, M.: A robust image Watermarking in the ridgelet domain using universally optimum decoder. IEEE Trans. Circuits Syst. Video Technol. 20(3), 396–406 (2010)CrossRefGoogle Scholar
  20. 20.
    Tsougenis, E.D., Papakostas, G.A., Koulouriotis, D.E., Tourassis, V.D.: Towards adaptivity of image watermarking in polar harmonic transforms domain. Opt. Laser Technol. 54, 84–97 (2013)CrossRefGoogle Scholar
  21. 21.
    Nezhadarya, E., Wang, Z.J., Ward, R.K.: Robust image watermarking based on multiscale gradient direction quantization. IEEE Trans. Inf. Forensics Secur. 6(4), 1200–1213 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringMaharaja Agrasen Institute of TechnologyNew Delhi-86India
  2. 2.ECEDThapar UniversityPatialaIndia

Personalised recommendations