Advertisement

Signal, Image and Video Processing

, Volume 9, Issue 6, pp 1365–1375 | Cite as

Emotion classification during music listening from forehead biosignals

  • Mohsen Naji
  • Mohammd Firoozabadi
  • Parviz Azadfallah
Original Paper

Abstract

Emotion recognition systems are helpful in human–machine interactions and clinical applications. This paper investigates the feasibility of using 3-channel forehead biosignals (left temporalis, frontalis, and right temporalis channel) as informative channels for emotion recognition during music listening. Classification of four emotional states (positive valence/low arousal, positive valence/high arousal, negative valence/high arousal, and negative valence/low arousal) in arousal–valence space was performed by employing two parallel cascade-forward neural networks as arousal and valence classifiers. The inputs of the classifiers were obtained by applying a fuzzy rough model feature evaluation criterion and sequential forward floating selection algorithm. An averaged classification accuracy of 87.05 % was achieved, corresponding to average valence classification accuracy of 93.66 % and average arousal classification accuracy of 93.29 %.

Keywords

Forehead biosignals Arousal Valence Emotion recognition 

Notes

Acknowledgments

We gratefully acknowledge the assistance of Ms Atena Bajoulvand for her help with collection of the data of female subjects.

References

  1. 1.
    Juslin, P.N., Västfjäll, D.: Emotional response to music: the need to consider underlying mechanisms. Behav. Brain. Sci. 31, 559–575 (2008)CrossRefGoogle Scholar
  2. 2.
    Erkkilä, J., Gold, C., Fachner, J., Ala-Ruona, E., Punkanen, M., Vanhala, M.: The effect of improvisational music therapy on the treatment of depression: protocol for a randomised controlled trial. BMC Psychiatry 8(50), (2008). doi: 10.1186/1471-244X-8-50
  3. 3.
    Morgan, K.A., Harris, A.W., Luscombe, G., Tran, Y., Herkes, G., Bartop, R.W.: The effect of music on brain wave functioning during an acute psychotic episode: a pilot study. Psychiatry Res. 178(2), 446–448 (2010)CrossRefGoogle Scholar
  4. 4.
    Saiwaki, N., Kato, K., Inokuchi, S.: An approach to analysis of EEGs recorded during music listening. J. New. Music. Res. 26(3), 227–243 (1997)CrossRefGoogle Scholar
  5. 5.
    Sokhadze, E.M.: Effects of music on the recovery of autonomic and electrocortical activity after stress induced by aversive visual stimuli. Appl. Psychophysiol. Biofeedback 31(1), 31–50 (2007)CrossRefGoogle Scholar
  6. 6.
    Flores-Gutiérrez, E.O., Díaz, J.L., Barrios, F.A., Favila-Humara, R., Guevara, M.A., del Río-Portilla, Y., Corsi-Cabrea, M.: Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. Int. J. Psychophysiol. 65(1), 69–84 (2007)CrossRefGoogle Scholar
  7. 7.
    Field, T., Martinez, A., Nawrocki, T., Pickens, J., Fox, N.A., Schanberg, S.: Music shifts frontal EEG in depressed adolescents. Adolescence 33(129), 109–116 (1998)Google Scholar
  8. 8.
    Bhattacharya, J., Petsche, H.: Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise. Signal Process. 85(11), 2161–2177 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Sammler, D., Grigutsch, M., Fritz, T., Koelsch, S.: Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 44(2), 293–304 (2007)CrossRefGoogle Scholar
  10. 10.
    Pavlygina, R.A., Sakharov, D.S., Davydov, V.I.: Spectral analysis of the human EEG during listening to musical compositions. Hum. Physiol. 30(1), 54–60 (2004)CrossRefGoogle Scholar
  11. 11.
    Blood, A.J., Zatorre, R.J., Bermudez, P., Evans, A.C.: Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 2(4), 382–387 (1999)CrossRefGoogle Scholar
  12. 12.
    Koelsch, S., Fitz, T., Cramon, D.Y.V., Müller, K., Friederici, A.D.: Investigating emotion with music: and fMRI study. Hum. Brain. Mapp. 27(3), 239–250 (2006)CrossRefGoogle Scholar
  13. 13.
    Schmidt, L.A., Trainor, L.J.: Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cogn. Emot. 15, 487–500 (2001)CrossRefGoogle Scholar
  14. 14.
    Trainor, L.J., Schmidt, L.A.: Processing emotions induced by music. In: Peretz, I., Zatorre, R. (eds.) The Cognitive Neuroscience of Music, pp. 310–324. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  15. 15.
    Chung, J.W., Vercoe, G.S.: The affective remixer: personalized music arranging. In: Proc. Conference on Human Factors in Computing Systems, pp. 393–398. Montréal, Canada (2006)Google Scholar
  16. 16.
    Knight, W.E.J., Rickard, N.S.: Relaxing music prevents stress-induced increases in subjective anxiety, systolic blood pressure, and heart rate in healthy males and females. J. Music Ther. 38(4), 254–272 (2001)CrossRefGoogle Scholar
  17. 17.
    Bernardi, L., Porta, C., Sleight, P.: Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: the importance of silence. Heart 92(4), 445–452 (2006)CrossRefGoogle Scholar
  18. 18.
    Witvliet, C.V.O., Varna, S.R.: Play it again Sam: repeated exposure to emotionally evocative music polarises liking and smiling responses, and influences other affective reports, facial EMG, and heart rate. Cogn. Emot. 21(3), 3–25 (2007)CrossRefGoogle Scholar
  19. 19.
    McFarland, R.A.: Relationship of skin temperature changes to the emotions accompanying music. Biofeedback Self Regul. 10(3), 255–267 (1985)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Janssen, J.H., van den Broek,E.L., Westerink, J.H.D.M.: Personalized affective music player. In: Proc. IEEE 3rd International Conference on Affective Computing and Intelligent Interaction, pp. 1–6. Eindhoven, Netherlands (2009)Google Scholar
  21. 21.
    Kim, J., André, E.: Emotion recognition based on physiological changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2067–2083 (2008)CrossRefGoogle Scholar
  22. 22.
    Lin, Y.P., Wang, C.H., Jung, T.P., Wu, T.L., Jeng, S.K., Duann, J.R., Chen, J.H.: EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. 57(7), 1798–1806 (2010)Google Scholar
  23. 23.
    Firoozabadi, S.M.P., Oskoei, M.R.A., Hu, H.: A human-computer interface based on forehead multi-channel bio-signals to control a virtual wheelchair. In: Proc. 14th Iranian Conference on Biomedical Engineering, pp. 108–113. Tehran, Iran (2008)Google Scholar
  24. 24.
    Rezazadeh, I.M., Wang, X., Firoozabadi, M., Golpayegani, M.R.H.: Using affective human–machine interface to increase the operation performance in virtual construction crane training system: a novel approach. Autom. Constr. 20(3), 289–298 (2011)CrossRefGoogle Scholar
  25. 25.
    Rad, R.H., Firoozabadi, M., Rezazadeh, I.M.: Discriminating affective states in music induction environment using forehead bioelectric signals. In: Proc. 1st Middle East Conference on Biomedical Engineering, pp. 343–346. Sharjah (2011)Google Scholar
  26. 26.
    Silvia, P.J., Warburton, J.B.: Positive and negative affect: bridging states and traits. In: Hersen, M., Thomas, J.C. (eds.) Comprehensive Handbook of Personality and Psychopathology, vol. 1, pp. 268–269. Wiley, New Jersey (2006)Google Scholar
  27. 27.
    Russel, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980)CrossRefGoogle Scholar
  28. 28.
    D’Alessandro, M., Esteller, R., Vachtsevanos, G., Hinson, A., Echauz, J., Litt, B.: Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients. IEEE Trans. Biomed. Eng. 50(5), 603–615 (2003)CrossRefGoogle Scholar
  29. 29.
    Pop-Jordanova, N., Pop-Jordanova, J.: Spectrum-weighted EEG frequency (“brain-rate”) as a quantitative indicator of mental arousal. Prilozi 26(2), 35–42 (2005)Google Scholar
  30. 30.
    Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG using higher order crossings. IEEE Trans. Inf. Technol. Biomed. 14(2), 186–197 (2010)CrossRefGoogle Scholar
  31. 31.
    Hu, Q., Xie, Z., Yu, D.: Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognit. 40(12), 3509–3521 (2007)CrossRefzbMATHGoogle Scholar
  32. 32.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn, pp. 235–236. Academic Press, San Diego, CA (2006)zbMATHGoogle Scholar
  33. 33.
    Beale, M.H., Hagan, M.T., Demuth, H.B.: Neural Network \(\text{ Toolbox }^{\rm TM}\) User’s Guide. The MathWorks Inc, Natick, MA (2011)Google Scholar
  34. 34.
    Liu, Y., Sourina, O., Nguyen, M.K.: Real-time EEG-based human emotion recognition and visualization. In: Proc. International Conference on Cyberworlds, pp. 262–269. Singapore (2010) Google Scholar
  35. 35.
    Khosrowabadi, R., Heijnen, M., Wahab, A., Quek, H.C.: The dynamic emotion recognition system based on functional connectivity of brain regions. In: Proc. IEEE Intelligent Vehicles Symposium, pp. 377–381. San Diego, CA (2010).Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Mohsen Naji
    • 1
  • Mohammd Firoozabadi
    • 2
  • Parviz Azadfallah
    • 3
  1. 1.Department of Biomedical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Medical PhysicsTarbiat Modares UniversityTehranIran
  3. 3.Department of PsychologyTarbiat Modares UniversityTehranIran

Personalised recommendations