Advertisement

Signal, Image and Video Processing

, Volume 9, Issue 3, pp 535–542 | Cite as

Palmprint verification with XOR-SUM Code

  • Deepti Tamrakar
  • Pritee Khanna
Original Paper

Abstract

The proposed work aims to improve the performance of palmprint recognition system by reducing the size of templates. Discrete Wavelet Transform assists in scaling down the size of extracted Region of Interest of palmprint approximately by a factor of 16, while preserving the potential information used to discriminate among different palms. This work proposes XOR-SUM Code, which is based on the fusion of the real and the imaginary Palm Code images for different orientations (say, \(N\)). The fused images of all orientations are added together to get line features of palmprint. The resulting image is then coded into \(\left\lceil (N+1)/2 \right\rceil \) bits to get line features of reduced size. Experiments are carried out on Hong Kong PolyU palmprint database that contains 8000 palmprint images of 400 different palms. XOR-SUM Code technique is compared with Palm Code, Competitive Code, and Contourlet Transform-based techniques in terms of Equal Error Rate (EER), Decidability Index (DI), and Genuine Acceptance Rate (GAR). The XOR-SUM Code technique results in EER, DI, and GAR of 1.83 %, 4.4433, and 98.17 % respectively.

Keywords

ROI Discrete Wavelet Transform (DWT) Gabor filter XOR-SUM Code Equal Error Rate (EER) Decidability Index (DI) Genuine Acceptance Rate (GAR) 

References

  1. 1.
    Kong, A., Zhang, D., Kamel, M.: A survey of palmprint recognition. Pattern Recogn. 42(7), 1408–1418 (2009)CrossRefGoogle Scholar
  2. 2.
    Yue, F., Zuo, W., Zhang, D., Li, B.: Fast palmprint identification with multiple templates per subject. Pattern Recogn. Lett. 32(8), 1108–1118 (2011)CrossRefGoogle Scholar
  3. 3.
    Huang, D.S., Jia, W., Zhang, D.: Palmprint verification based on principal lines. Pattern Recogn. 41(4), 1316–1328 (2008)CrossRefGoogle Scholar
  4. 4.
    Hana, C.C., Cheng, H.L., Lin, C.L., Fan, K.C.: Personal authentication using palmprint features. Pattern Recogn. 36(1), 371–381 (2003)CrossRefGoogle Scholar
  5. 5.
    Wong, K.Y.E., Chekima, A., Sainarayanan, G.: Palmprint identification using Sobel operator. In: Proceedings of IEEE, 10th International Conference on Control, Automation, Robotics and Vision, pp. 1338–1341 (2008)Google Scholar
  6. 6.
    Tamrakar, D., Khanna, P.: Palmprint Verification using Competitive Index with PCA. In: Proceedings IEEE, International Conference on Signal Processing, Communication, Computing and Networking Technologies (ICSCCN), pp. 768–771 (2011)Google Scholar
  7. 7.
    Hu, D., Feng, G., Zhou, Z.: Two-dimensional locality preserving projections (2DLPP) with its application to palmprint recognition. Pattern Recogn. 40(1), 339–342 (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Lu, J., Zhao, Y., Xue, Y., Hu, J.: Palmprint Recognition via Locality Preserving Projections and Extreme Learning Machine Neural Network. In: Proceedings IEEE, International Conference on, Signal Processing, pp. 2096–2099 (2008)Google Scholar
  9. 9.
    Mansoor, A.B., Masood, H., Mumtaz, M., Khan, A.S.: A feature level multimodal approach for palmprint identification using directional subband energies. J. Netw. Comput. Appl. Arch. 34(1), 159–171 (2011)CrossRefGoogle Scholar
  10. 10.
    Badrinath, G.S., Kachhi, N.K., Gupta, P.: Verification system robust to occlusion using low-order zernike moments of palmprint subimages. Telecommun. Syst. 47(3–4), 275–290 (2010)Google Scholar
  11. 11.
    Kong, W.K., Zhang, D., Li, W.: Palmprint Feature Extraction using 2-D Gabor filters. Pattern Recogn. 36(10), 2339–2347 (2003)CrossRefGoogle Scholar
  12. 12.
    Xinchun, W., Kaihua, Y., Yuming, L., Qing, Y.: Palmprint recognition based on curvelet transform decision fusion. Procedia Eng. 23, 303–309 (2011)CrossRefGoogle Scholar
  13. 13.
    Tamrakar, D., Khanna, P.: Analysis of palmprint verification using wavelet filter and Competitive Code. In: Proceedings IEEE, International Conference on Computational Intelligence and Communication Networks (CICN), pp. 20–25 (2010)Google Scholar
  14. 14.
    Mu, M., Ruan, Q., Guo, S.: Shift and gray scale invariant features for palmprint identification using complex directional wavelet and local binary pattern. Neurocomputing 74(17), 3351–3360 (2011)CrossRefGoogle Scholar
  15. 15.
    Badrinath, G.S., Gupta, P.: Palmprint based recognition system using phase-difference information. Futur. Gener. Comput. Syst. 28, 287–305 (2012)CrossRefGoogle Scholar
  16. 16.
    Kumar, A.: Palmprint identification using PalmCodes. In: Proceedings IEEE, International Conference on Image and Graphics, pp. 258–261 (2004)Google Scholar
  17. 17.
    Kong, A.W., Zhang, D.: Competitive coding scheme for palmprint verification. In: Proceedings of the 17th International Conference on, Pattern Recognition, pp. 520–523 (2004)Google Scholar
  18. 18.
    Kong, A., Zhang, D., Kamel, M.: Palmprint identification using feature-level fusion. Pattern Recogn. 39(3), 478–487 (2006)CrossRefzbMATHGoogle Scholar
  19. 19.
    Jia, W., Huang, D.S., Zhang, D.: Palmprint verification based on robust line orientation code. Pattern Recogn. 41(5), 1504–1513 (2008)CrossRefzbMATHGoogle Scholar
  20. 20.
    Wang, X., Lei, L., Wang, M.: Palmprint verification based on 2D Gabor wavelet and pulse-coupled neural network. Knowl. Based Syst. 27, 451–455 (2012)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Meraoumia, A., Chitroub, S., Bouridane, A.: Palmprint and Finger-Knuckle-Print for Efficient Person Recognition based on Log-Gabor filter response. Proc. Analog. Integr. Circ. Sign. Process. 69(1), 17–27 (2011)CrossRefGoogle Scholar
  22. 22.
    Yue, F., Zuo, W., Zhang, D., Wang, K.: Orientation selection using modified FCM for Competitive Code-based palmprint recognition. Pattern Recogn. 42(11), 2841–2849 (2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    Raghavendra, R., Dorizzi, B., Rao, A., Kumar, H.: Designing efficient fusion schemes for multimodal biometric systems using face and palmprint. Pattern Recogn. 44(5), 1076–1088 (2011) Google Scholar
  24. 24.
    Savi, T., Pavesic, N.: Personal recognition based on an image of the palmar surface of the hand. Pattern Recogn. 40(11), 3152–3163 (2007)CrossRefGoogle Scholar
  25. 25.
    Kumar, A., Zhang, D.: Personal authentication using multiple palmprint representation. Pattern Recogn. 38(10), 1695–1704 (2005)CrossRefGoogle Scholar
  26. 26.
    Zhang, D., Guo, Z., Lu, G., Zhang, L., Liu, Y., Zuod, W.: Online joint palmprint and palmvein verification. Exp. Syst. Appl. 38, 2621–2631 (2011)CrossRefGoogle Scholar
  27. 27.
    Xu, Y., Zhu, Q., Zhang, D.: Combine crossing matching scores with conventional matching scores for bimodal biometrics and face and palmprint recognition experiments. Neurocomputing 74(18), 3946–3952 (2011)CrossRefGoogle Scholar
  28. 28.
    Chin, Y.J., Ong, T.S., Goh, M.K.O., Hiew, B.Y.: Integrating palmprint and fingerprint for identity verification. In: Proceedings of the 3rd Internatinal Conference on Network and System, Security, pp. 437–442 (2009)Google Scholar
  29. 29.
    Ashok, V., Balakumaran, T., Gowrishankar, C., Vennila, I.L.A.: The fast haar wavelet transform for signal and image processing. Int. J. Comput. Sci. Inf. Secur. IJCSIS 7(1), 126–130 (2010)Google Scholar
  30. 30.
    Kong, A.K., Zhang, D., Kamel, M.S.: An analysis of IrisCode. Proc. IEEE Trans. Image Process. 19(2), 522–532 (2010)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Guo, Z., Zuo, W., Zhang, L., Zhang, D.: A unified distance measurement for orientation coding in palmprint verification. Neurocomputing 73(4–6), 944–950 (2010)CrossRefGoogle Scholar
  32. 32.
    Zhang, D.: PolyU Palmprint Database. http://www4.comp.polyu.edu.hk/~biometrics/2D_3D_Palmprint.htm, Accessed June 2012

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Pandit Dwarka Prasad Mishra Indian Institute of Information TechnologyDesign and Manufacturing JabalpurJabalpurIndia

Personalised recommendations