Signal, Image and Video Processing

, Volume 9, Issue 2, pp 305–329 | Cite as

A framework of perceptual features for the characterisation of 3D textured images

  • Ludovic Paulhac
  • Pascal Makris
  • Jean-Yves Ramel
  • Jean-Marc Gregoire
Original Paper


This paper presents a multiresolution system for volumetric texture analysis. The originality of this system partially originates from its use of combinations of perceptual texture features that correspond to adjectives commonly used by humans to describe textures. To approximate these features, we use a combination of different families of texture analysis methods rather than a single texture analysis model. This choice is necessary to obtain a good perceptual feature approximation and allows our system to be robust and generic. Moreover, by using our human-understandable features (HUF), it is convenient for a user to manipulate and select the features that are, according to the user, relevant for a given application. Two experiments are presented: the first experiment demonstrates the strong correspondence between our features and a human’s description of textures, and the second demonstrates the performance of our proposed method. Finally, the proposed HUF are integrated into an interactive segmentation system and are compared to previously proposed descriptors through analysis of several segmentation results of 3D ultrasound images.


Volumetric texture Segmentation  Multiresolution  Human-understandable features  3D ultrasound images 


  1. 1.
    Tuceryan, M., Jain, A.K: Texture analysis, chapter 2.1. In: The Handbook of Pattern Recognition and Computer Vision, pp. 207–248 (1998)Google Scholar
  2. 2.
    Haralick, R.M.: Statistical and structural approaches to textures. Proc. In: in IEEE 67(5), 786–804 (1979)Google Scholar
  3. 3.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Texture features for image classification. In: in IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)Google Scholar
  4. 4.
    Tuceryan, M., Jain, A.K.: Texture segmentation using voronoi polygons. IEEE Trans. Pattern Anal. Mach. Intell. 12, 211–216 (1990)CrossRefGoogle Scholar
  5. 5.
    Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. In: in IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)Google Scholar
  6. 6.
    Chellappa, R., Jain, A.K.: Markov Random Fields Theory and Application. Academic Press, Boston (1993)Google Scholar
  7. 7.
    Tamura, H., Mori, S., Yamawaki, T.: Texture features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 8(6), 460–473 (1978)CrossRefGoogle Scholar
  8. 8.
    Amadasun, M., King, R.: Texture features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19(5), 1264–1274 (1989)CrossRefGoogle Scholar
  9. 9.
    Neyret, F.: Homepage of Neyret. (1996)
  10. 10.
    Suzuki, M.T., Yoshitomo, Y., Osawa, N., Sugimoto, Y.Y.: Classification of solid textures using 3D mask patterns. In: ICSMC ’04: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (2004)Google Scholar
  11. 11.
    Reyes-Aldasoro, C.C., Bhalerao, A.: Volumetric texture segmentation by discriminant feature selection and multiresolution classification. IEEE Trans. Med. Imaging 26, 1–14 (2007)CrossRefGoogle Scholar
  12. 12.
    Shen, L., Bai, L.: 3D Gabor wavelets for evaluating spm normalization algorithm. Med. Image Anal. 12, 375–383 (2008)CrossRefGoogle Scholar
  13. 13.
    Pietroni, N., Cignoni, P., Otaduy, M.A., Scopigno, R.: Solid-texture synthesis: a survey. IEEE Comput. Graph. Appl. 30, 74–89 (2010)CrossRefGoogle Scholar
  14. 14.
    Reyes-Aldasoro, C.C., Bhalerao, A.: Volumetric texture analysis in biomedical imaging. In: Biomedical Diagnostics and Clinical Technologies: Applying High-Performance Cluster and Grid, Computing (2011)Google Scholar
  15. 15.
    Cula, O.G., Dana, K.J.: 3D texture recognition using bidirectional feature histograms. Int. J. Comput. Vis. 59(1), 33–60 (2004)CrossRefGoogle Scholar
  16. 16.
    Neyret, F.: A general and multiscale model for volumetric textures. In: Davis, W.A., Prusinkiewicz, P. (eds.) GI ’95: Proceedings of Graphics Interface, pp. 83–91. Canadian Information Processing Society, Canadian Human-Computer Communications Society, May (1995). ISBN 0-9695338-4-5Google Scholar
  17. 17.
    Doretto, G., Chiuso, A., Wu, Y.N., Soatto, S.: Dynamic textures. Int. J. Comput. Vis. 51(2), 91–109 (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Paulhac, L., Makris, P., Gregoire, J.-M., Ramel, J.-Y.: Human understandable features for segmentation of solid texture. In: ISVC ’09: Proceedings of the 5th International Symposium on Vision, Computing, pp. 379–390 (2009)Google Scholar
  19. 19.
    Kovalev, V.A., Petrou, M., Bondar, Y.S.: Texture anisotropy in 3D images. IEEE Trans. Image Process. 8, 346–360 (1999)CrossRefGoogle Scholar
  20. 20.
    Ip, H.H.-S., Lam, S.W.-C.: Using an octree-based rag in hyper-irregular pyramid segmentation of texture volume. In: IAPR ’94: Proceedings of the IAPR Workshop on Machine Vision Applications, pp. 259–262. Kawasaki, Japan, December (1994)Google Scholar
  21. 21.
    Kovalev, V.A., Kruggel, F., Gertz, H.-J., Yves von Cramon, D.: Three-dimensional texture analysis of MRI brain datasets. IEEE Trans. Med. Imaging 20(5), 424–433 (2001)CrossRefGoogle Scholar
  22. 22.
    Kovalev, V.A., Petrou, M., Suckling, J.: Detection of structural differences between the brains of schizophrenic patients and controls. Psychiatry Res NeuroImaging 124(3), 177–189 (2003)CrossRefGoogle Scholar
  23. 23.
    Mahmoud-Ghoneim, D., Toussaint, G., Constans, J.M., de Certaines, J.D.: Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas. Magn. Reson. Imaging 21, 983–987 (2003)CrossRefGoogle Scholar
  24. 24.
    Chen, X., Murphy, R.F.: Robust classification of subcellular location patterns in high resolution 3D fluorescence microscope images. In: EMBS’04 : Proceedings of the International Conference on Engineering in Medicine and Biology Society, number 1–5, September (2004)Google Scholar
  25. 25.
    Showalter, C., Clymer, B.D., Richmond, B., Powell, K.: Three-dimensional texture analysis of cancellous bone cores evaluated at clinical ct resolutions. Osteoporos Int. 17, 259–266 (2006)CrossRefGoogle Scholar
  26. 26.
    Jafari-Khouzani, K., Soltanian-Zadeh, H., Elisevich, K., Patel, S.: Comparison of 2D and 3D wavelet features for TLE lateralization. In: Proceedings of the SPIE, vol. 5369 (2004)Google Scholar
  27. 27.
    Zhan, Y., Shen, D.: Deformable segmentation of 3D ultrasound prostate image using statistical texture matching method. IEEE Trans. Med. Imaging 25(3), 256–272 (2006)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Fernández, M., Mavilio, A., Tejera, M.: Texture segmentation of a 3D seismic section with wavelet transform and Gabor filters. In: ICPR ’00: Proceedings of the International Conference on Pattern Recognition, vol. 3, pp. 354–357. Barcelona, Spain (2000)Google Scholar
  29. 29.
    François, R., Fablet, R., Barillot, C.: Robust statistical registration of 3D ultrasound images using texture information. In: ICIP ’03: Proceedings of the International Conference on Image Processing, vol. 1, September (2003)Google Scholar
  30. 30.
    Medioni, G.G., Yasumoto, Y.: A note on using the fractal dimension for segmentation. In: WCVRC ’84: Proceedings of the Workshop on Computer Vision: Representation and Control, Annapolis, pp. 25–30 (1984)Google Scholar
  31. 31.
    Tsai, D.-M., Tseng, C.-F.: Surface roughness classification for castings. Pattern Recognit. 32, 389–405 (1999)CrossRefGoogle Scholar
  32. 32.
    Luk, F., Huynh, V.M.: A vision system for in-process surface quality assessment. In: Proceedings of the Vision’87 SME Conference (1987)Google Scholar
  33. 33.
    Al-Kindi, G.A., Baul, R.M., Gill, K.F.: An application of machine vision in the automated inspection of engineering surfaces. Int. J. Prod. Res. 30, 241–253 (1992)Google Scholar
  34. 34.
    Zhongxiang, H., Zhu, L., Jiaxu, T., Xuehong, M., Xiaojun, S.: Evaluation of three-dimensional surface roughness parameters based on digital image processing. Int. J. Adv. Manuf. Technol. 40, 342–348 (2008)Google Scholar
  35. 35.
    Chetverikov, D.: Pattern orientation and texture symmetry. In: ICCAIP’95: Proceedings of the 6th International Conference on Computer Analysis of Images and Patterns (1995)Google Scholar
  36. 36.
    Radon, J.: Uber die bestimmung von funktionen durch ihre integralwerte langs gewisser mannigfaltigkeiten. Berichte Sachsische Academie der Wissenchaften, Leipzig 69, 262–267 (1917)Google Scholar
  37. 37.
    Guedon, J.-P., Barba, D., Burger, N.: Psychovisual image coding via an exact discrete radon transform. In: SPIE ’95: Proceedings of the International Conference of the Society of Photo-Optical Instrumentation Engineers, vol. 2501, pp. 562–572. April (1995)Google Scholar
  38. 38.
    Coster, M., Chermand, J.-L.: Precis d’Analyse d’Images. CNRS (1989)Google Scholar
  39. 39.
    Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)Google Scholar
  40. 40.
    Aydin, T., Yemez, Y., Anarim, E., Sankur, B.: Multidirectional and multiscale edge detection via m-band wavelet transform. IEEE Trans. Image Process. 5(9), 1370–1376 (1996)CrossRefGoogle Scholar
  41. 41.
    Unser, M.: Sum and difference histograms for texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 8, 119–125 (1986)Google Scholar
  42. 42.
    Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using lbp variance (lbpv) with global matching. Pattern Recognit. 43, 706–719 (2009)Google Scholar
  43. 43.
    Gagalowicz, A.: Vers un modèle de texture. PhD thesis, Université Pierre et Marie Curie, Paris VI (1983)Google Scholar
  44. 44.
    Myint, S.W., Lam, N.: A study of lacunarity-based texture analysis approaches to improve urban image classification. Comput. Environ. Urban Syst. 29(5), 501–523 (2005)CrossRefGoogle Scholar
  45. 45.
    Shoshany, M.: An evolutionary patch pattern approach for texture discrimination. Pattern Recognit. 41, 2327–2336 (2008)CrossRefzbMATHGoogle Scholar
  46. 46.
    Mital, D.P., Goh, W.L., Chan, K.L., Goyal, R.K.: A translation rotation and scale invariant texture analysis technique based on image granularity. In: ISRM ’94: Proceedings of the 5th International Symposium on Robotics and Manufacturing (1994)Google Scholar
  47. 47.
    Goyal, R.K., Goh, W.L., Mital, D.P., Chan, K.L.: Invariant element compactness for texture classification. In: ICARCV ’94: Proceedings of the International Conference on Automation, Robotics and Computer Vision (1994)Google Scholar
  48. 48.
    Goyal, R.K., Goh, W.L., Mital, D.P., Chan, K.L.: A translation rotation and scale invariant texture analysis technique based on structural properties. In: ICAT ’94: Proceedings of the Third International Conference on Automation, Technology (1994)Google Scholar
  49. 49.
    Goyal, R.K., Goh, W.L., Mital, D.P., Chan, K.L.: Scale and rotation invariant texture analysis based on structural property. In: IECON ’95: Proceedings of the International Conference on Industrial Electronics, Control, and Instrumentation (1995)Google Scholar
  50. 50.
    Lin, H.-C., Wang, L.-L., Yang, S.-N.: Extracting periodicity of a regular texture based on autocorrelation functions. Pattern Recognit. Lett. 18, 433–443 (1997)CrossRefGoogle Scholar
  51. 51.
    Selkäinaho, K., Parkkinen, J., Oja, E.: Comparison of \(\chi ^2\) and \(\kappa \) statistics in finding signal and picture periodicity. In: ICPR ’88: Proceedings of the 9th International Conference on Pattern Recognition, pp. 1221–1224. Rome, Italy, October (1988)Google Scholar
  52. 52.
    Starovoitov, V.V., Jeong, S.-Y., Park, R.: Texture periodicity detection: features, properties, and comparisons. IEEE Trans. Syst. Man Cybern. 28(6), 839–849 (1998)Google Scholar
  53. 53.
    Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis. 43(1), 29–44 (2001)Google Scholar
  54. 54.
    Mallat, S.: A Wavelet Tour of Signal Processing, The Sparse Way, 3rd edn. Academic Press (2008)Google Scholar
  55. 55.
    Chassery, J.-M., Montanvert, A.: Géométrie discrète en analyse d’images (1991)Google Scholar
  56. 56.
    Kesheng, W., Otoo, E., Suzuki, K.: Optimizing two-pass connected-component labeling algorithms. Pattern Anal. Appl. 12, 117–135 (2009)CrossRefGoogle Scholar
  57. 57.
    Zhang, J., Tan, T.: Brief review of invariant texture analysis methods. Pattern Recognit. 35, 735–747 (2002)CrossRefzbMATHGoogle Scholar
  58. 58.
    Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., Wong, T.-T.: Solid texture synthesis from 2d exemplars. In: SIGGRAPH ’07: Proceedings of the 34th International Conference on Computer Graphics and Interactive, Techniques (2007)Google Scholar
  59. 59.
    Paulhac, L., Makris, P., Ramel, J.-Y.: A solid texture database for segmentation and classification experiments. In: VISSAPP ’09: Proceedings of the 4th International Conference on Computer Vision Theory and Applications (2009)Google Scholar
  60. 60.
    Paulhac, L., Makris, P., Ramel, J.-Y.: Comparison between 2D and 3D local binary pattern methods for characterisation of three-dimensional textures. In: ICIAR ’08: Proceedings of the 5th International Conference in Image Analysis and Recognition (2008)Google Scholar
  61. 61.
    Brodatz, P.: Textures: A Photographic Album for Artists and Designer. Dover Pub, New York (1966)Google Scholar
  62. 62.
    Randen, T., Husőy, J.H.: Filtering for texture classification : a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21, 291–310 (1999)CrossRefGoogle Scholar
  63. 63.
    Smith, G., Burns, I.: Meastex database. (1997)
  64. 64.
  65. 65.
    Dana, K.J., Van-Ginneken, B., Nayar, S.K., Koenderink, J.J.: CURet database. (1999)
  66. 66.
    Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: OUTex database. (2002)
  67. 67.
    Kopf, J.: Solid textures samples. (2007)
  68. 68.
    Van Gool, L.J., Dewaele, P., Oosterlinck, A.: Texture analysis anno 1983. Comput. Vis. Graph. Image Process. 29(3), 336–357 (1985)CrossRefGoogle Scholar
  69. 69.
  70. 70.
    Ojala, T., Pietikäinen, M.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002) Google Scholar
  71. 71.
    Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Lecture Notes nr. 61 (1992)Google Scholar
  72. 72.
    Unser, M.: Texture classification and segmentation using wavelet frames. IEEE Trans. Image Process. 4, 1549–1560 (1995)CrossRefGoogle Scholar
  73. 73.
    Muneeswaran, K., Ganesan, L., Arumugam, S., Ruba Soundar, K.: Texture classification with combined rotation and scale invariant wavelet features. Pattern Recognit. 38, 1495–1506 (2005)Google Scholar
  74. 74.
    Coleman, G.B., Andrews, H.C.: Image segmentation by clustering. In: Proceedings of the IEEE, pp. 773–785 (1979)Google Scholar
  75. 75.
    Cardoso, J.S., Corte-Real, L.: Toward a generic evaluation of image segmentation. IEEE Trans. Image Process. 14(11), 1773–1782 (2005)CrossRefGoogle Scholar
  76. 76.
    Gusfield, D.: Partition-distance: a problem and class of perfect graphs arising in clustering. Inf. Process. Lett. 82(9), 159–164 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  77. 77.
    Alison, N.J., Djamal, B.: Ultrasound image segmentation: a survey. IEEE Trans. Med. Imaging 25(8), 987–1010 (2006)CrossRefGoogle Scholar
  78. 78.
    Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Ludovic Paulhac
    • 1
  • Pascal Makris
    • 1
  • Jean-Yves Ramel
    • 1
  • Jean-Marc Gregoire
    • 2
  1. 1.Laboratoire Informatique de l’Université François Rabelais de ToursToursFrance
  2. 2.UMR INSERM U930, CNRS ERL 3106, équipe 5Université François Rabelais de ToursToursFrance

Personalised recommendations