Signal, Image and Video Processing

, Volume 8, Issue 8, pp 1543–1553 | Cite as

Image and video processing using discrete fractional transforms

Original Paper

Abstract

The mathematical transforms such as Fourier transform, wavelet transform and fractional Fourier transform have long been influential mathematical tools in information processing. These transforms process signal from time to frequency domain or in joint time–frequency domain. In this paper, with the aim to review a concise and self-reliant course, the discrete fractional transforms have been comprehensively and systematically treated from the signal processing point of view. Beginning from the definitions of fractional transforms, discrete fractional Fourier transforms, discrete fractional Cosine transforms and discrete fractional Hartley transforms, the paper discusses their applications in image and video compression and encryption. The significant features of discrete fractional transforms benefit from their extra degree of freedom that is provided by fractional orders. Comparison of performance states that discrete fractional Fourier transform is superior in compression, while discrete fractional cosine transform is better in encryption of image and video. Mean square error and peak signal-to-noise ratio with optimum fractional order are considered quality check parameters in image and video.

Keywords

Discrete fractional Fourier transforms Discrete fractional Cosine transforms Discrete fractional Hartley transforms Image Video 

Notes

Acknowledgments

The authors acknowledge the support provided by the Department of Electronics & Communication Engineering, Thapar University Patiala, Punjab (India), for carrying out the Research work and anonymous reviewers for their valuable suggestions.

References

  1. 1.
    Wiener, N.: Hermitian polynomials and Fourier analysis. J. Math. Phys. 8, 70–73 (1929)MATHGoogle Scholar
  2. 2.
    Condon, E.U.: Immersion of the Fourier transform in a continuous group of functional transformations. Proc. Nat. Acad. Sci. USA 23(3), 158–164 (1937)CrossRefGoogle Scholar
  3. 3.
    Kober, H.: Wurzeln aus der Hankel-, Fourier- und aus an-deren stetigen transformationen. Q. J. Math. Oxford Ser. 10, 45–49 (1939)Google Scholar
  4. 4.
    Namias, V.: The fractional order Fourier transform and its application to quantum mechanics. J. Inst. Maths. Appl. 25, 241–265 (1980)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Almeida, L.B.: The fractional Fourier transform and time-frequency representations. In: IEEE Trans. Signal Process. 42, 3084–3091 (1994)Google Scholar
  6. 6.
    Vijaya, C., Bhat, J.S.: Signal compression using discrete fractional Fourier transform and set partitioning in hierarchical tree. Signal Process. 86(8), 1976–1983 (2006)CrossRefMATHGoogle Scholar
  7. 7.
    Tao, R., Deng, B., Wang, Y.: Research progress of the fractional Fourier transform in signal processing. Sci. China Ser. F Inf. Sci. 49(1), 1–25 (2006)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bracewell, R. N.: The Fourier Transform and Its Applications, 2nd Revised. McGraw Hill, NewYork (1986).Google Scholar
  9. 9.
    Jindal, N., Singh, K.: Image encryption using discrete fractional transforms. International Conference on Advances in Recent Technologies in Communication and Computing. Published by IEEE Computer Society, 165–167 (2010).Google Scholar
  10. 10.
    Abomhara, M., Zakaria, O., Khalifa, O.O.: An overview of video encryption techniques. Int. J. Comput. Theory Eng. 2(1), 103–110 (2010)Google Scholar
  11. 11.
    Gonzalez, R. C., Woods, R. E.: Digital Image Processing, 3rd edition (2008).Google Scholar
  12. 12.
    Santhanam, B., McClellan, J.H.: The discrete rotational Fourier transform. IEEE Trans. Signal Process. 42, 994–998 (1996)CrossRefGoogle Scholar
  13. 13.
    Lohmann, A.W.: Image rotation, Wigner rotation and the fractional Fourier transform. J. Opt. Soc. Am. A 10, 2181–2186 (1993)Google Scholar
  14. 14.
    Mendlovic, D., Ozaktas, H.M.: Fractional Fourier transforms and their optical implementation. I. J. Opt. Soc. Am. A 10, 1875–1881 (1993)CrossRefGoogle Scholar
  15. 15.
    Ozaktas, H.M., Mendlovic, D.: Fractional Fourier transforms and their optical implementation. II. J. Opt. Soc. Am. A 10, 2522–2531 (1993)CrossRefGoogle Scholar
  16. 16.
    Atakishiyev, N.M., Vicent, L.E., Wolf, K.B.: Continuous vs. discrete fractional Fourier transforms. J. Comput. Appl. Math. 107, 73–95 (1999)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Singh, K.: Performance of discrete fractional Fourier transform classes in signal processing applications, Ph.D. Thesis, Thapar University (2006).Google Scholar
  18. 18.
    Yetik I.S., Kutay M.A., Ozaktas, H., Ozaktas, H.M.: Continuous and discrete fractional Fourier domain decomposition. In: IEEE, 93–96 (2000).Google Scholar
  19. 19.
    Ozaktas, H.M., Zalevsky, Z., Kutay, M.A.: The Fractional Fourier Transform with Applications in Optics and Signal Processing. Wiley, New York (2000)Google Scholar
  20. 20.
    Pei, S.C., Yeh, M.H.: A novel Method for discrete fractional Fourier transform computation. ISCAS 2001(2), 585–588 (2001)Google Scholar
  21. 21.
    Yeh, M.H., Pei, S.C.: A method for the discrete-time fractional Fourier transform computation. Signal Process. 51(6), 1663–1669 (2003)MathSciNetGoogle Scholar
  22. 22.
    Pei, S.C., Yeh, M.H., Tseng, C.C.: Discrete fractional Fourier transform based on orthogonal projections. In: IEEE Trans. Signal Process. 47(5), 1335–1348 (1999)Google Scholar
  23. 23.
    Djurovic, I., Stancovic, S., Pitas, I.: Digital watermarking in the fractional Fourier transformation domain. J. Netw. Comput. Appl. 24, 167–173 (2001)CrossRefGoogle Scholar
  24. 24.
    Rubio, J.G.V., Santhanam, B.: On the multiangle centered discrete fractional Fourier transform. In: IEEE Signal Process. Lett., 12(4), (2005).Google Scholar
  25. 25.
    Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  26. 26.
    McBride, A.C., Keer, F.H.: On Namia’s fractional Fourier transform. IMA J. Appl. Math 239, 159–175 (1987)CrossRefGoogle Scholar
  27. 27.
    Bultheel, A., Mart ínez, H.: Computation of the fractional Fourier transform. Appl. Comput. Harmon. Anal. 16(3), 182–202 (2004)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Narayanan, V.A., Prabhu, K.M.M.: The fractional Fourier transform: theory, implementation and error analysis. Microprocess. Microsyst. 27, 511–521 (2003)CrossRefGoogle Scholar
  29. 29.
    Bultheel, A., Martinez, H.: A shattered survey of the fractional Fourier transform. TW Reports, TW337, 42 pages, Department of Computer Science, K.U. Leuveven, Leuven, Belgium (April 2002).Google Scholar
  30. 30.
    Santhanam, B., McClellan, J.H.: The DRFT-a rotation in time-frequency space. Proc. IEEE Int. Conf. Acoust. Speech Signal Process (ICASSP) 2, 921–925 (1995)Google Scholar
  31. 31.
    Candan, C.: Discrete fractional Fourier transform. M.S. thesis, Bikent Univ., Ankara, Turkey (1998).Google Scholar
  32. 32.
    Pei, S.C., Yeh, M.H.: Improved discrete fractional Fourier transform. Opt. Lett. 22, 1047–1049 (1997)CrossRefGoogle Scholar
  33. 33.
    Santhanam, B., McClellan, J.H.: The discrete rotational Fourier transform. Signal Process. 44(4), 994–998 (1996)Google Scholar
  34. 34.
    Pei, S.C., Yeh, M.H.: Discrete fractional Fourier transform. Proc. IEEE Int. Symp. Circuits Syst. 536–539 (1996).Google Scholar
  35. 35.
    Yeh, M.H., Pei, S.C.: A method for the discrete fractional Fourier transform computation. In: IEEE Trans. Signal Process. 51(3), 889–891 (2003)Google Scholar
  36. 36.
    Pei, S.C., Yeh, M.H.: The discrete fractional cosine and sine transforms. IEEE Trans. Signal Process. 49, 1198–1207 (2001)Google Scholar
  37. 37.
    Gerek, O.N., Erden, M.F.: The discrete fractional cosine transform. Proceedings of the IEEE Balkan Conference on Signal Processing, Communications, Circuits and Systems, Istanbul, Turkey (2000).Google Scholar
  38. 38.
    Lohmann, A.W., Mendlovic, D., Zalevsky, Z., Dorch, R.G.: Some important fractional transformations for signal processing. Opt. Commun. 125, 18–20 (1996)CrossRefGoogle Scholar
  39. 39.
    Yip, P.: Sine and Cosine transforms. In: Poularikas, A.D. (ed.) Transforms, The Handbook Applications. CRC Press, Alabama (1996)Google Scholar
  40. 40.
    Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series VI: Elementary Functions. Gordon and Breech Science Publishers, New York (1986) Google Scholar
  41. 41.
    Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. In: IEEE Trans. Comp. C 23, 90–93 (1974).Google Scholar
  42. 42.
    Narasimha, M.J., Peterson, A.M.: On the computation of the discrete cosine transform. In: IEEE Trans. Commun. 26(6), 934–936 (1978)Google Scholar
  43. 43.
    Shu, H., Wang, Y., Senhadji, L., Luo, L.: Direct computation of type-II discrete Hartley transform. Proc. IEEE Signal Process. Lett. 14, 329–332 (2007)Google Scholar
  44. 44.
    Jiang, L., Shu, H., Wu, J., Wang, L., Senhadji, L.: A novel split-radix fast algorithm for 2-D discrete Hartley transform. Proc. IEEE Trans. Circuits Syst. 57, 911–924 (2010)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Pratt, W.K.: Digital Image Processing, 2nd edn. Wiley, New York (1991)MATHGoogle Scholar
  46. 46.
    Sid-Ahmed, M.A.: Image Processing–Theory, Algorithms, and Architectures. McGraw-Hill, New York (1995)Google Scholar
  47. 47.
    Thyagarajan, K.S.: Still Image and video compression with MATLAB. Wiley, New York (2011)Google Scholar
  48. 48.
    Chen, C.C.: On the selection of image compression algorithms. In: IEEE 14th International Conference on Pattern Recognition (ICPR’98) (1998).Google Scholar
  49. 49.
    Netravali, A.N., Haskell, B.G.: Digital Pictures—Representation and Compression. Plenum Press, New York (1988)Google Scholar
  50. 50.
    Ozturk, I., Sogukpinar, I.: Analysis and comparison of image encryption algorithms. World Acad. Sci. Eng. Technol. 3, 26–30 (2005)Google Scholar
  51. 51.
    Singh, N., Sinha, A.: Optical image encryption using fractional Fourier transform and chaos. Opt. Lasers Eng. 46, 117–123 (2008)CrossRefGoogle Scholar
  52. 52.
    Hennely, B., Sheridan, J.T.: Image encryption and fractional Fourier transform. Optik 114, 251–265 (2003)CrossRefGoogle Scholar
  53. 53.
    Liu, S., Yu, L., Zhu, B.: Optical image encryption by cascaded fractional Fourier transform with random phase filtering. Opt. Commun. 187, 57–63 (2001)Google Scholar
  54. 54.
    Jayaraman, S., Esakkirajan, S., Veerakumar, T.: Digital Image Processing. Tata McGraw Hill Pte. Ltd, New Delhi (2009)Google Scholar
  55. 55.
    Puri, A., Chen, T.: Multimedia Systems, Standards, and Networks. Marcel Dekker Inc., New York (2000)CrossRefGoogle Scholar
  56. 56.
    Trappe, W., Washington, L.C.: Introduction to Cryptography with Coding Theory. Prentice Hall, Upper Saddle River, NJ (2001)Google Scholar
  57. 57.
    Unnikrishnan, G., Joseph, J., Singh, K.: Optical encryption by double-random phase encoding in the fractional fourier domain. Opt. Lett. 25, 887–889 (2000)CrossRefGoogle Scholar
  58. 58.
    Liu, Z.J., Liu, S.T.: Double image encryption based on iterative fractional Fourier transform. Opt. Commun. 275, 324–329 (2007)CrossRefGoogle Scholar
  59. 59.
    Joshi, M., Shakher, C., Singh, K.: Image encryption and decryption using fractional Fourier transform and radial Hilbert transform. Opt. Lasers Eng. 46, 522–526 (2008)CrossRefGoogle Scholar
  60. 60.
    Tao, R., Xin, Y., Wang, Y. : Double image encryption based on random phase encoding in the fractional Fourier domain. Opt. Express 15, (2007).Google Scholar
  61. 61.
    Puri, A., Chen, T.: Multimedia Systems, Standards, and Networks. Marcel Dekker Inc., New York (2000)CrossRefGoogle Scholar
  62. 62.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. Proceedings of the 38th Symposium on Foundations of Computer Science, IEEE (1997).Google Scholar
  63. 63.
    Bovik, A.C.: The Essential Guide to Image Processing. Elsevier, Burlington, MA (2008)Google Scholar
  64. 64.
    Qiao, L., Nahrstedt, K.: Comparison of MPEG encryption algorithms. Int. J. Comput. Graphics 22(3), (1998).Google Scholar
  65. 65.
    Maniccam, S.S., Bourbakis, N.G.: Image and video encryption using SCAN patterns. Pattern Recognit. 37(4), 725–737 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Department of ECEThapar UniversityPatialaIndia

Personalised recommendations