Signal, Image and Video Processing

, Volume 8, Issue 7, pp 1323–1334 | Cite as

Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network

  • Yatindra KumarEmail author
  • M. L. Dewal
  • R. S. Anand
Original Paper


There are numerous neurological disorders such as dementia, headache, traumatic brain injuries, stroke, and epilepsy. Out of these epilepsy is the most prevalent neurological disorder in the human after stroke. Electroencephalogram (EEG) contains valuable information related to different physiological state of the brain. A scheme is presented for detecting epileptic seizures from EEG data recorded from normal subjects and epileptic patients. The scheme is based on discrete wavelet transform (DWT) analysis and approximate entropy (ApEn) of EEG signals. Seizure detection is performed in two stages. In the first stage, EEG signals are decomposed by DWT to calculate approximation and detail coefficients. In the second stage, ApEn values of the approximation and detail coefficients are calculated. Significant differences have been found between the ApEn values of the epileptic and the normal EEG allowing us to detect seizures with 100 % classification accuracy using artificial neural network. The analysis results depicted that during seizure activity, EEG had lower ApEn values compared to normal EEG. This gives that epileptic EEG is more predictable or less complex than the normal EEG. In this study, feed-forward back-propagation neural network has been used for classification and training algorithm for this network that updates the weight and bias values according to Levenberg–Marquardt optimization technique.


Electroencephalogram (EEG) Discrete wavelet transforms(DWT) Approximate entropy (ApEn) Artificial neural network (ANN) Support vector machine (SVM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hasan O.: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36, 52027–52036 (2009)Google Scholar
  2. 2.
    Liu A., Hahn J.S., Heldt G.P., Coen R.W.: Detection of neonatal seizures through computerized EEG analysis. Electroencephalogr. Clin. Neurophysiol. 82, 30–37 (1992)CrossRefGoogle Scholar
  3. 3.
    Gotman J., Flanagah D., Zhang J., Rosenblatt B.: Automatic seizure detection in the newborn: methods and initial evaluation. Electroencephalogr. Clin. Neurophysiol. 103, 356–362 (1997)CrossRefGoogle Scholar
  4. 4.
    Adeli H., Zhou Z., Dadmehr N.: Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 123, 69–87 (2003)CrossRefGoogle Scholar
  5. 5.
    Khan Y.U., Gotman J.: Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol. 114, 898–908 (2003)CrossRefGoogle Scholar
  6. 6.
    Zarjam P., Mesbah M., Boashash B.: Detection of newborns EEG seizure using optimal features based on discrete wavelet transform. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 2, 265–268 (2003)Google Scholar
  7. 7.
    Kannathal N., Choo M., Acharya U., Sadasivan P.: Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80(3), 187–194 (2005)CrossRefGoogle Scholar
  8. 8.
    Radhakrishnan N., Gangadhar B.: Estimating regularity in epileptic seizure time-series data: a complexity-measure approach. In: IEEE Eng. Med. Biol. 17(3), 89–94 (1998)Google Scholar
  9. 9.
    Pincus S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 88, 2297–2301 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Diambra L., Figueiredo J., Malta C.: Epileptic activity recognition in EEG recording. Phys. A Stat. Mech. Appl. 273(3–4), 495–505 (1999)CrossRefGoogle Scholar
  11. 11.
    Andrzejak R.G., Lehnertz K., Rieke C.: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64(6), 061907 (2001)CrossRefGoogle Scholar
  12. 12.
    Andrzejak R.G., Widman G., Lehnertz K.: The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy. Epilepsy Res. 44, 129–140 (2001)CrossRefGoogle Scholar
  13. 13.
    Foo S.Y., Stuart G., Harvey B., Meyer-Baese A.: Neural network-based EKG pattern recognition. Eng. Appl. Artif. Intell. 15, 253–260 (2002)CrossRefGoogle Scholar
  14. 14.
    Kiymik M.K., Akin M., Subasi A.: Automatic recognition of alertness level by using wavelet transform and artificial neural network. J. Neurosci. Methods 139, 231–240 (2004)CrossRefGoogle Scholar
  15. 15.
    Schaltenbrand N., Lengelle R., Toussaint M.: Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients. Sleep 19(1), 26–35 (1996)Google Scholar
  16. 16.
    Kiymik M.K., Subasi A., Ozcalik H.R.: Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure. J. Med. Syst. 28(6), 511–522 (2004)CrossRefGoogle Scholar
  17. 17.
    Petrosian A., Prokhorov D., Homan R., Dashei R., Wunsch D.: Recurrent neural network based prediction of epileptic seizures in intra and extracranial EEG. Neurocomputing 30, 201–218 (2000)CrossRefGoogle Scholar
  18. 18.
    Subasi A.: Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Syst. Appl. 31, 320–328 (2006)CrossRefGoogle Scholar
  19. 19.
    Kalayci T., Ozdamar O.: Wavelet preprocessing for automated neural network detection of EEG spikes. In: IEEE Eng. Med. Biol. Mag. 14(2), 160–166 (1995)Google Scholar
  20. 20.
    Nigam V., Graupe D.: A neural-network-based detection of epilepsy. Neurol. Res. 26(1), 55–60 (2004)CrossRefGoogle Scholar
  21. 21.
    Mohseni, H., Maghsoudi, A., Kadbi, M., Hashemi, J., Ashourvan, A.: Automatic detection of epileptic seizure using time–frequency distributions. In: IET 3rd International Conference on Advances in Medical, Signal and Information Processing, MEDSIP 2006, vol. 14 (2006)Google Scholar
  22. 22.
    Jahankhani, P., Kodogiannis, V., Revett, K.: EEG signal classification using wavelet feature extraction and neural networks. In: IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA’06), pp. 52–57(2006)Google Scholar
  23. 23.
    Subasi A.: Epileptic seizure detection using dynamic wavelet network. Expert Syst. Appl. 29(2), 343–355 (2005)CrossRefGoogle Scholar
  24. 24.
    Subasi A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)CrossRefGoogle Scholar
  25. 25.
    Srinivasan V., Eswaran C., Sriraam N.: Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29(6), 647–660 (2005)CrossRefGoogle Scholar
  26. 26.
    Güler N., Übeyli E., Güler I.: Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29(3), 506–514 (2005)CrossRefGoogle Scholar
  27. 27.
    Übeyli E.: Analysis of EEG signals using Lyapunov exponents. Neural Netw. World 16(3), 257–273 (2006)Google Scholar
  28. 28.
    Übeyli E.: Fuzzy similarity index employing Lyapunov exponents for discrimination of EEG signals. Neural Netw. World 16(5), 421–431 (2006)Google Scholar
  29. 29.
    Kannathal N., Choo M.L., Acharya U.R., Sadasivan P.K.: Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80, 187–194 (2005)CrossRefGoogle Scholar
  30. 30.
    Subasi A.: Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput. Biol. Med. 37(2), 227–244 (2007)CrossRefGoogle Scholar
  31. 31.
    Guo L., Riveero D., Pazaos A.: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J. Neurosci. Methods 193, 156–163 (2010)CrossRefGoogle Scholar
  32. 32.
    Polat K., Günes S.: Classification of epileptic form EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl. Math. Comput. 187(2), 1017–1026 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Tzallas, A., Tsipouras, M., Fotiadis, D.: Automatic seizure detection based on time–frequency analysis and artificial neural networks. Computational Intelligence and Neuroscience 13, Article ID 80510 (2007)Google Scholar
  34. 34.
    Mallat S.: A theory for multi-resolution signal decomposition: the wavelet representation. In: IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)zbMATHGoogle Scholar
  35. 35.
    Subasi A., Gursoy M.I.: EEG signal classification using PCA, ICA, LDA and support vector machine. Expert Syst. Appl. 37, 8659–8666 (2010)CrossRefGoogle Scholar
  36. 36.
    Guo L., Rivero D., Dorado J., Rabunal J.R., Pazos A.: Automatic epileptic Seizure detection in EEG based on line length feature and artificial neural network. J. Neurosci. Methods 191, 101–109 (2010)CrossRefGoogle Scholar
  37. 37.
    Nicolaou N., Georgiou J.: Detection of epileptic electroencephalogram based on permutation entropy and support vector machine. Expert Syst. Appl. 39, 202–209 (2012)CrossRefGoogle Scholar
  38. 38.
    Orhan U., Hekim M., Ozer M.: EEG signals classification using the K means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38, 13475–13481 (2011)CrossRefGoogle Scholar
  39. 39.
    Guo L., Rivero D., Dorado J., Munteanu C.R., Pazos A.: Automatic feature extraction using genetic programming: an application to epileptic. EEG Classif. 38, 10425–10436 (2011)Google Scholar
  40. 40.
    Ubeyli E.D.: Least square support vector machine employing model-based methods coefficients for analysis of EEG signals. Expert Syst. Appl. 37, 233–239 (2010)CrossRefGoogle Scholar
  41. 41.
    Iscan Z., Dokur Z., Demiralap T.: Classification of electroencephalogram signals with combined time and frequency features. Expert Syst. Appl. 38, 10499–10505 (2011)CrossRefGoogle Scholar
  42. 42.
    Wang D., Miao D., Xie C.: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst. Appl. 38, 14314–14320 (2011)Google Scholar
  43. 43.
    Acharya U.R., Molinari F., Sree S.V., Chattopadhyay S.: Automatic diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7(4), 401–408 (2012)CrossRefGoogle Scholar
  44. 44.
    Hsu K.C., Yu S.N.: Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm. Comput. Biol. Med. 40, 823–830 (2010)CrossRefGoogle Scholar
  45. 45.
    Guo, L., Rivero, D., Seoane, J., Pazos A.: Classification of EEG signals using relativewavelet energy and artificial neural networks. In: Proceedings of the first ACM/SIGEVO, Summit on Genetic and Evolutionary Computation (GEC’09), pp. 177–184. Shanghai (2009)Google Scholar
  46. 46.
    Gandhi T., Panigrahi B.K., Anand S.: A comparative study of wavelet families for EEG signal classification. Neurocomputing 74, 3051–3057 (2011)CrossRefGoogle Scholar
  47. 47.
    Kayikcioglu T., Aydemir O.: A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data. Pattern Recognit. Lett. 31, 1207–1215 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations