Signal, Image and Video Processing

, Volume 8, Issue 7, pp 1233–1243 | Cite as

Color image segmentation: a novel spatial fuzzy genetic algorithm

  • Ahmad Khan
  • Javid Ullah
  • M. Arfan Jaffar
  • Tae-Sun Choi
Original Paper


Image segmentation is a very important low-level vision task. It is the perceptual grouping of pixels based on some similarity criteria. In this article, we have applied spatial fuzzy genetic algorithm (SFGA) for the unsupervised segmentation of color images. The SFGA adds diversity to the search process to find the global optima. The performance of SFGA is influenced by two factors: first, K number of clusters—should be known in advance; second, the initialization of the cluster centers. To overcome these issues, a progressive technique based on self-organizing map is presented to find out the optimal K number of clusters automatically. To handle the initialization problem, peaks are identified using the image color histograms. The genetic algorithm with fuzzy behavior maximizes the fuzzy separation and minimizes the global compactness among the segments. The segmentation is performed on wavelet transform image which not only reduces the dimensionality and computational cost but also makes more compact segments. A novel pruning technique is proposed to handle the problem of over-segmentation. The results show that the proposed technique outperforms state-of-the-art methods.


Self-organizing map (SOM) Segmentation Spatial fuzzy C-mean (sFCM) Genetic algorithm Cluster center 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lucchese, L., Mitra, S.K.: Color image segmentation: a state of the art survey. In: Proceedings of the Indian National Science Academy on Image Processing, Vision Pattern Recognition, vol. 67, no. 2, pp. 207–221 (2001)Google Scholar
  2. 2.
    Loo, P.K., Tan, C.L.: Adaptive region growing color segmentation for text using irregular pyramid. In: International Workshop on Document Analysis Systems, vol. 3163, pp. 264–275 (2004)Google Scholar
  3. 3.
    Kass M., Witkin A., Terzopoulos D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)CrossRefGoogle Scholar
  4. 4.
    Cohen L.: On active contour models and balloons. CVGIP Image Underst. 53(2), 211–218 (1991)CrossRefzbMATHGoogle Scholar
  5. 5.
    Xu C., Prince J.: Snakes, shapes, and gradient vector flow. In: IEEE Trans. Image Process. 7(3), 359–369 (1998)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Mortensen E., Barrett W.: Interactive segmentation with intelligent scissors. Graph. Models Image Process. 60(5), 349–384 (1998)CrossRefzbMATHGoogle Scholar
  7. 7.
    Besag J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. B 48, 259–302 (1986)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Boy Kov, Y., Jolly, M.: Interactive graph cuts for optimal boundary region segmentation of objects in N-D images. In: IEEE International Conference on Computer Vision, vol. 1, pp. 105–112 (2001)Google Scholar
  9. 9.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts ? In: IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)Google Scholar
  10. 10.
    Rother C., Kolmogorov V., Blake A.: Grabcut interactive foreground extraction using iterated graphcuts. ACM Trans. Graph. 23(3), 309–314 (2004)CrossRefGoogle Scholar
  11. 11.
    Li Y., Sun J., Tang C.K., Shum H.Y.: Lazy snapping. ACM Trans. Graph. 23(3), 303–308 (2004)CrossRefGoogle Scholar
  12. 12.
    Beucher S., Meyer F.: The morphological approach to segmentation: the watershed transformation. Math. Morphol. Image Process. 34, 433–481 (1993)Google Scholar
  13. 13.
    Vincent L., Soille P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. In: IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1999)Google Scholar
  14. 14.
    Duda R., Hart P., Stork D.: Pattern Classification, 2nd edn. Wiley, Hoboken (2001)zbMATHGoogle Scholar
  15. 15.
    Ahmed M.N., Yamany S.M., Farag A.A., Mohamed N., Moriarty T.: A modified fuzzy C-means algorithm for bias field estimation and segmentation of mri data. In: IEEE Trans. Med. Imaging 21(3), 193–199 (2002)Google Scholar
  16. 16.
    Chuang K.S, Tzeng H.L., Chen S., Chen T.J.: Fuzzy C-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30, 9–15 (2006)CrossRefGoogle Scholar
  17. 17.
    Choi H., Baraniuk R.G.: Multiscale image segmentation using wavelet-domain hidden markov models. In: IEEE Trans. Image. Process. 10(9), 1309–1321 (2001)MathSciNetGoogle Scholar
  18. 18.
    Chang T., Jay Kuo C.J.: Texture analysis and classification with tree-structured wavelet transform. In: IEEE Trans. Image. Process. 2(4), 429–441 (1993)Google Scholar
  19. 19.
    Kohonen T.: Self-Organising Maps, Springer Series in Information Sciences. 3rd edn, vol. 30. Heidelberg, Berlin (2001)Google Scholar
  20. 20.
    Pena J.M., Lozano J.A., Larranaga P.: An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recognit. Lett. 20, 1027–1040 (1999)CrossRefGoogle Scholar
  21. 21.
    Tan K.S., MatIsa N.A.: Color image segmentation using histogram thresholding fuzzy C-means hybrid approach. Pattern Recognit. 44, 1–15 (2011)CrossRefzbMATHGoogle Scholar
  22. 22.
    Ilea D.E., Whelan P.F.: Ctex—an adaptive unsupervised segmentation algorithm based on colour-texture coherence. In: IEEE Trans. Image Process. 17(10), 1926–1939 (2008)MathSciNetGoogle Scholar
  23. 23.
    Mukhopadhyay A., Maulik U., Bandyopadhyay S.: Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes. In: IEEE Trans. Evolut. Comput. 13(5), 992–1005 (2009)Google Scholar
  24. 24.
    Tsekouras G.E., Papageorgiou D., Kotsiantis S., Kalloniatis C., Pintelas P.: Fuzzy clustering of categorical attributes and its use in analyzing cultural data. Int. J. Comput. Intell. 1(3), 147–151 (2004)Google Scholar
  25. 25.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE International Conference Computer Vision, vol. 2, pp. 416–423 (2001)Google Scholar
  26. 26.
    Yang A.Y., Wright J., Sastry S.S., Ma Y.: Unsupervised segmentation of natural images via lossy data compression. Comput. Vis. Image Underst. 110(2), 212–225 (2008)CrossRefGoogle Scholar
  27. 27.
    Nock R., Nielsen F.: Statistical region merging. In: IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1452–1458 (2004)Google Scholar
  28. 28.
    Vazquez E., Baldrich R., Weijer J., Vanrell M.: Describing reflectances for colour segmentation robust to shadows, highlights and textures. J. Latex Class Files 6(1), 1–15 (2007)Google Scholar
  29. 29.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE International Conference Computer Vision, vol. 2, pp. 416–423 (2001)Google Scholar
  30. 30.
    Freixenet, J., Munoz, X., Raba, D., Marti, J., Cufi, X.: Yet another survey on image segmentation: Region and boundary information integration. In: Proceedings of the European Conference Computer Vision, pp. 408–422 (2002)Google Scholar
  31. 31.
    Unnikrishnan R., Pantofaru C., Hebert M.: Toward objective evaluation of image segmentation algorithms. In: IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 929–944 (2007)Google Scholar
  32. 32.
    Meila, M.: Comparing clusterings-an axiomatic view. In: Proceedings of the International Conference Machine Learning, pp. 577–584 (2005)Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Ahmad Khan
    • 1
  • Javid Ullah
    • 1
  • M. Arfan Jaffar
    • 1
    • 2
  • Tae-Sun Choi
    • 2
  1. 1.National University of Computer and Emerging SciencesIslamabadPakistan
  2. 2.Gwangju Institute of Science and TechnologyGwangjuKorea

Personalised recommendations