Signal, Image and Video Processing

, Volume 8, Issue 7, pp 1199–1209 | Cite as

Speed up of Video Enhancement based on Human Perception

  • Vittoria Bruni
  • Daniela De Canditiis
  • Domenico Vitulano
Original Paper

Abstract

This paper presents SUVEHP (speed up of video enhancement based on human perception), a human perception-based model oriented to reduce the computational time of digital video restoration. In particular, two specific hypothesis tests able to classify degraded frame regions are proposed. Classification is performed in agreement with regions visual significance in order to enable or inhibit motion compensated enhancement. The level of the proposed hypothesis tests is theoretically assessed. Moreover, extensive experimental results on video sequences affected by additive Gaussian noise show that SUVEHP speeds up some standard motion compensated denoisers up to 60%, preserving or even slightly increasing both the objective and subjective visual quality of the restored sequences.

Keywords

Human visual system Block classification Computational complexity reduction Image and video enhancement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, C., Freeman, W.T.: A high-quality video denoising algorithm based on reliable motion estimation. In: Proceedings of ECCV (2010)Google Scholar
  2. 2.
    Dabov K., Foi A., Katkovnik V., Egiazarian K.: Image denoising by sparse 3d transform-domain collaborative filtering. In: IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetGoogle Scholar
  3. 3.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Video denoising by sparse 3D transform-domain collaborative filtering. In: Proceedings of EUSIPCO 07 (2007, Sept)Google Scholar
  4. 4.
    Winkler S.: Digital Video Quality—Vision Models and Metrics. Wiley, New York (2005)CrossRefGoogle Scholar
  5. 5.
    You J., Reiter U., Hannuksela M.M., Gabbouj M., Perkis A.: Perceptual-based quality assessment for audio-visual services: a survey. Signal Process. Image Commun. 25, 482–501 (2010)CrossRefGoogle Scholar
  6. 6.
    Hontsch I., Karam L.J.: Adaptive image coding with perceptual distortion control. In: IEEE Trans. Image Process. 11(3), 213–222 (2002)Google Scholar
  7. 7.
    Watson A.B., Yang G.Y., Solomon J.A., Villasenor J.: Visibility of wavelet quantization noise. In: IEEE Trans. Image Process. 6(8), 1164–1174 (1997)Google Scholar
  8. 8.
    Gutierrez J., Ferri F.J., Malo J.: Regularization operators for natural images based on nonlinear perception models. In: IEEE Trans. Image Process. 15(1), 189–200 (2006)MathSciNetGoogle Scholar
  9. 9.
    Panetta K., Wharton E.J., Agaian S.S.: Human visual system-based image enhancement and logarithmic contrast measure. In: IEEE Trans. Syst. Man Cybern. 38(1), 174–188 (2008)Google Scholar
  10. 10.
    Bruni V., Vitulano D.: A generalized model for scratch detection. In: IEEE Trans. Image Process. 13(1), 44–50 (2004)Google Scholar
  11. 11.
    Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P.: Image quality assessment: from error visibility to structural similarity. In: IEEE Trans. Image Process. 13, 600–612 (2004)Google Scholar
  12. 12.
    Wang Z., Lu L., Bovik A.: Video quality assessment based on structural distortion measurement. Signal Process. Image Commun. 19(2), 121–132 (2004)CrossRefGoogle Scholar
  13. 13.
    Wang Z., Li Q.: Information content weighting for perceptual image quality assessment. In: IEEE Trans. Image Process. 20(5), 1185–1198 (2011)Google Scholar
  14. 14.
    Imade, O.O., Chandler, D.M.: Image-adaptive contrast and entropy based model of regions of visible distortion. In: Proceedings of IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pp. 65–68 (2010)Google Scholar
  15. 15.
    Lewis A.S., Knowles G.: Image compression using the 2-d wavelet transform. In: IEEE Trans. Image Process. 1, 244–250 (1992)Google Scholar
  16. 16.
    Barni, M., Bartolini, F., Piva, A.: Improved wavelet-based watermarking through pixel-wise masking. In: IEEE Trans. Image Process. 10(5), 783–791 (2001, May)Google Scholar
  17. 17.
    Watson, A.B., Borthowick, R., Taylor, M.: Image quality and entropy masking. Proc. SPIE 3016(2) (1997)Google Scholar
  18. 18.
    Chandler D.M., Hemami S.S.: Dynamic contrast-based quantization for lossy wavelet image compression. In: IEEE Trans. Image Process. 14, 397–410 (2005)Google Scholar
  19. 19.
    Liu, Z., Karam, L.J., Watson, A.B.: JPEG2000 encoding with perceptual distortion control. In: IEEE Trans. Image Process. 15(7), 1763–1778 (2006, July)Google Scholar
  20. 20.
    Podilchuk, C.I., Zeng, W.: Image-adaptive watermarking using visual models. In: IEEE J. Sel. Areas Commun. 16(4), 525–539 (1998, May)Google Scholar
  21. 21.
    Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 011006-1/011006-21 (2010)Google Scholar
  22. 22.
    Wang Z., Li Q.: Video quality assessment using a statistical model of human visual speed perception. J. Opt. Soc. Am. A 24(12), B61–B69 (2007)CrossRefGoogle Scholar
  23. 23.
    Tong, H.H.Y., Venetsanopoulos, A.N.: A perceptual model for jpeg applications based on block classification, texture masking and luminance masking. In: Proceedings of ICIP’98, vol. 3 (1998)Google Scholar
  24. 24.
    Zhang X., Lin W., Xue P.: Just-noticeable difference estimation with pixels in images. J. Vis. Commun. Image Represent. 19, 30–41 (2008)CrossRefGoogle Scholar
  25. 25.
    Boyce, J.M.: Noise Reduction of image sequences using adaptive motion compensated frame averaging. In: Proceedings of IEEE International Conference on ICASSP-92 (1992)Google Scholar
  26. 26.
    Wong T.S., Bouman C.A., Pollak I., Fan Z.: A document image model and estimation algorithm for optimized JPEG decompression. In: IEEE Trans. Image Process. 18(11), 2518–2535 (2009)MathSciNetGoogle Scholar
  27. 27.
    Monte, V., Frazor, R.A., Bonin, V., Geisler, W.S., Corandin, M.: Independence of luminance and contrast in natural scenes and in the early visual system. Nat. Neurosci. 8(12), 1690–1697 (2005, Dec)Google Scholar
  28. 28.
    Frazor R.A., Geisler W.S.: Local luminance and contrast in natural in natural images. Vis. Res. 46, 1585–1598 (2006)CrossRefGoogle Scholar
  29. 29.
    Casella G., Berger R.L.: Statistical Inference, Duxbury Advanced Series. Thomson Learning Inc., Pacific Grove (2002)Google Scholar
  30. 30.
    Bruni V., De Canditiis D., Vitulano D.: Human visual system for complexity reduction of image and video restoration. Lect. Notes Comput. Sci. 6855/2011, 261–268 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.: Introduction to Algorithms, 2nd edn. McGraw-Hill, New York (2001)MATHGoogle Scholar
  32. 32.
    Channabasappa M.N.: On the square root formula in the Bakhshali manuscript. Indian J. Hist. Sci. 11(2), 112–124 (1976)MathSciNetMATHGoogle Scholar
  33. 33.
  34. 34.
    Shi Y.Q., Sun H.: Image and Video Compression for Multimedia Engineering: Fundamentals, Algorithms and Standards. CRC Press, Boca Raton (2000)Google Scholar
  35. 35.
  36. 36.
    Zhang L., Dong W., Zhang D., Shi G.: Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recogn. 43(4), 1531–1549 (2010)CrossRefMATHGoogle Scholar
  37. 37.
    Kokaram A.: Motion Picture Restoration. Springer, Berlin (1998)CrossRefGoogle Scholar
  38. 38.
    Bankoski, J., Wilkins, P., Xu, Y.: Technical Overview of VP8, an Open Source Video Codec for the web. Google Int. Rep. (2011)Google Scholar
  39. 39.
    Moorthy, A.K., Bovik, A.C.: Visual importance pooling for image quality assessment. In: IEEE J. Sel. Top. Signal Process. 3(2), 193–201 (2009, Apr)Google Scholar
  40. 40.
    Koenker R.: Quantile Regression. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  41. 41.
    Tippet L.H.C.: On the extreme individuals and the range of samples taken from a normal population. Biometrika 17(3,4), 264–387 (1925)Google Scholar
  42. 42.
    Kutin, S.: Extensions to McDiarmid’s Inequality When Differences are Bounded with High Probability. Technical Report TR-2002-04, Department of Computer Science, University of Chicago (2002)Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Vittoria Bruni
    • 1
  • Daniela De Canditiis
    • 2
  • Domenico Vitulano
    • 2
  1. 1.Department of SBAI, Faculty of EngineeringUniversity of Rome “Sapienza”RomeItaly
  2. 2.Istituto per le Applicazioni del Calcolo “M. Picone”C.N.R.RomeItaly

Personalised recommendations