Signal, Image and Video Processing

, Volume 6, Issue 3, pp 503–511 | Cite as

1-D and 2-D digital fractional-order Savitzky–Golay differentiator

Original Paper

Abstract

In this paper, the one-dimension digital fractional-order Savitzky–Golay differentiator (DFOSGD), which generalizes the Savitzky–Golay filter from the integer order to the fractional order, is introduced and extended to 2-D by a group of direction operators. Then, a new image-enhancing algorithm is proposed based on the 2-D DFOSGD, and an unsupervised optimization algorithm is proposed for choosing the fractional-order parameter. Four numerical experiments are used to assess the performance of 2-D DFOSGD-based image-enhancing algorithm, and the results demonstrate its validity.

Keywords

Fractional-order derivative Digital differentiator Savitzky–Golay filter Image enhancement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oldham K.B., Spanier J.: The Fractional Calculus. Academic, New York, NY (1974)MATHGoogle Scholar
  2. 2.
    Riemann, B.: Versuch einer allgemeinen auffassung der integration und differentiation. Gesammelte Mathematische Werke, pp. 331–344 (1876)Google Scholar
  3. 3.
    Miller K.S.: Derivatives of noninteger order. Math. Mag. 68(3), 183–192 (1995)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Caputo M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13(5), 529–539 (1967)CrossRefGoogle Scholar
  5. 5.
    Vinagre B.M., Podlubny I., Hernandez A., Feliu V.: Some approximations of fractional order operators used in control theory and applications. J. Frac. Calc. Appl. Anal. 4, 47–66 (2001)Google Scholar
  6. 6.
    Podlubny I., Petras I., Vinagre B.M., O’Leary P., Dorcak L.: Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29(1–4), 281–296 (2002)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Carlson G., Halijak C.: Approximation of fractional capacitors (1/s)1/n by a regular Newton process. In: IEEE Trans. Circuit Theory 11(2), 210–213 (1964)Google Scholar
  8. 8.
    Dutta Roy S.C.: On the realization of a constant-argument immittance or fractional operator. In: IEEE Trans. Circuit Theory 14(3), 264–274 (1967)CrossRefGoogle Scholar
  9. 9.
    Chareff A., Sun H.H., Tsao Y.Y., Onaral B.: Fractal system as represented by singularity function. In: IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)CrossRefGoogle Scholar
  10. 10.
    Matsuda K., Fujii H.: H optimized wave-absorbing control: analytical and experimental results. J. Guid. Control Dyn. 16(6), 1146–1153 (1993)MATHCrossRefGoogle Scholar
  11. 11.
    Oustaloup A., Levron F., Mathieu B., Nanot F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. In: IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(1), 25–39 (2000)CrossRefGoogle Scholar
  12. 12.
    Tseng C.-C.: Design of fractional order digital FIR differentiators. IEEE Signal Process. Lett. 8(3), 77–79 (2001)CrossRefGoogle Scholar
  13. 13.
    Samadi S., Ahmad M.O., Swamy M.N.S.: Exact fractional-order differentiators for polynomial signals. IEEE Signal Process. Lett. 11(6), 529–532 (2004)CrossRefGoogle Scholar
  14. 14.
    Chen Y.Q., Moore K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(3), 363–367 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chen Y.Q., Vinagre B.M.: A new IIR-type digital fractional order differentiator. Signal Process. 83(11), 2359–2365 (2003)MATHCrossRefGoogle Scholar
  16. 16.
    Tseng C.-C.: Improved design of digital fractional-order differentiators using fractional sample delay. IEEE Trans. Circuits Syst. I Regul. Pap. 53(1), 193–203 (2006)CrossRefGoogle Scholar
  17. 17.
    Barbosa R.S., Tenreiro Machado J.A., Silva M.F.: Time domain design of fractional differintegrators using least-squares. Signal Process. 86(10), 2567–2581 (2006)MATHCrossRefGoogle Scholar
  18. 18.
    Tenreiro Machado J.A., Galhano A.M., Oliveira A.M., Tar J.K.: Approximating fractional derivatives through the generalized mean. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3723–3730 (2009)MATHCrossRefGoogle Scholar
  19. 19.
    Tseng C.C., Lee S.L.: Design of fractional order digital differentiator using radial basis function. IEEE Trans. Circuits Syst. I Regul. Pap. 57(7), 1708–1718 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tenreiro Machado J.A.: Calculation of fractional derivatives of noisy data with genetic algorithms. Nonlinear Dyn. 57(1–2), 253–260 (2009)MATHCrossRefGoogle Scholar
  21. 21.
    Chen D.L., Chen Y.Q., Xue D.Y.: Digital fractional order Savitzky-Golay differentiator. IEEE Trans. Circuits Syst. II Express Briefs 58(11), 758–762 (2011)CrossRefGoogle Scholar
  22. 22.
    Bai J., Feng X.C.: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16(10), 2492–2502 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Oustaloup A., Mathieu B., Melchior P. (1991) Edge detection using non integer derivation. In: IEEE European Conference on Circuit Theory and Design, pp. 3–6Google Scholar
  24. 24.
    Mathieu B., Melchior P., Oustaloup A., Ceyral C.: Fractional differentiation for edge detection. Signal Process. 83, 2421–2432 (2003)MATHCrossRefGoogle Scholar
  25. 25.
    Pu Y.F., Wang W., Zhou J.L.: Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation. Sci. China Ser. E Inf. Sci. 38(2), 2252–2272 (2008)Google Scholar
  26. 26.
    Chen, D.L., Chen, Y.Q., Xue, D.Y.: Digital fractional order Savitzky-Golay differentiator and its application. In: Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1–10 (2011)Google Scholar
  27. 27.
    Pu Y.F., Zhou J.L., Yuan X.: Fractional differential mask: a fractional differential based approach for multi-scale texture enhancement. IEEE Trans. Image Process. 19(2), 491–511 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Gonzalez R.C., Woods R.E.: Digital Image Processing. 2nd edn. Prentice Hall, New Jersey (2002)Google Scholar
  29. 29.
  30. 30.
  31. 31.
    Gonzalez R.C., Woods R.E., Eddins S.L.: Digital Image Processing Using MATLAB. 2nd edn. Gatesmark, Knoxville, TN (2009)Google Scholar
  32. 32.
    Chan T.F., Vese L.A.: Active contours without edges. In: IEEE Trans. Image Process. 10(2), 266–277 (2001)MATHCrossRefGoogle Scholar
  33. 33.
    Li C., Kao C.Y., Gore J.C., Ding Z.: Minimization of region-scalable fitting energy for image segmentation. In: IEEE Trans. Image Process. 17(10), 1940–1949 (2008)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Shi Y., Karl W.C.: A real-time algorithm for the approximation of level-set-based curve evolution. In: IEEE Trans. Image Process. 17(5), 645–656 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.College of Information Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.Department of Electrical and Computer Engineering, Center for Self-Organizing and Intelligent Systems (CSOIS)Utah State UniversityLoganUSA

Personalised recommendations