Advertisement

Signal, Image and Video Processing

, Volume 6, Issue 3, pp 411–420 | Cite as

Approximate realization of digital fractional forward operator using digital IIR filter

  • Tahar Bensouici
  • Abdelfatah CharefEmail author
Original Paper

Abstract

In this paper, a simple and an efficient approach for approximating the digital fractional forward operator z m (0 < m < 1) using digital infinite impulse response (IIR) filter is proposed. In this method, the coefficients of the closed form digital IIR filter derived for the approximation of the fractional forward operator, in a given frequency band, are based on approximation of fractional order systems. First, analog rational function approximation, in a given frequency band, of the fractional power zero (FPZ) is given. Then, the forward difference generating function is used to obtain a closed form IIR digital filter equivalent of the continuous FPZ, which approximates the digital fractional forward operator. Finally, illustrative examples have been presented to illustrate the effectiveness of the proposed design technique of the fractional forward operator z m approximation and its use in performing a fractional m-step prediction.

Keywords

Digital IIR filter Forward difference transformation Fractional forward operator Fractional power zero 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laakso T.I., Valimaki V., Karjalainen M., Laine U.K.: Splitting the unit delay: tool for fractional delay filter design. In: IEEE Signal Process. Mag. 13(1), 30–60 (1996)CrossRefGoogle Scholar
  2. 2.
    Murphy, P., Krukowski, A., Tarczynski, A.: An efficient fractional sampler delayer for digital beam steering. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2245–2248. Munich, Germany, April 21–24 (1997)Google Scholar
  3. 3.
    Vesma, J., Saramiki, T.: Interpolation filters with arbitrary frequency response for all-digital receivers. In: Proceedings of IEEE International Symposium on Circuits Systems, pp. 568–571. Atlanta, GA, USA, May 12–15 (1996)Google Scholar
  4. 4.
    Olsson, M., Johansson H., Lowenborg, P. : Delay Estimation using adjustable fractional delay all-pass filters. In: Proceedings of 7th Nordic Signal Processing Symposium, pp. 346–349. Reykjavík, Iceland, June 7–9 (2006)Google Scholar
  5. 5.
    Välimäki, V., Lehtonen, H-M., Laakso, T.I.: Musical signal analysis using fractional delay inverse comb filters. In: Proceedings of 10th International Conference on Digital Audio Effects, pp. 261–268. Bordeaux, France, September 10–15 (2007)Google Scholar
  6. 6.
    Bensouici, T., Charef, A.: Digital IIR fractional delay filter used in analog-to-digital conversion. In: Proceedings of 4th International IFAC Workshop on Fractional Differentiation and Its Applications, Badajoz, Spain, October 18–20 (2010)Google Scholar
  7. 7.
    Ortigueira M.D., Matos C., Piedade M.S.: Fractional discrete-time signal processing: scale conversion and linear prediction. Nonlinear Dyn. 29(1–4), 173–190 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Pei S.C., Wang P.H., Lin H.S.: Closed-form design of maximally flat FIR fractional delay filter. In: IEEE Signal Process. Lett. 13(7), 405–408 (2006)CrossRefGoogle Scholar
  9. 9.
    Valimaki V., Haghparast A.: Fractional delay filter design based on truncated Lagrange interpolation. In: IEEE Signal Process. Lett. 14(11), 816–819 (2007)CrossRefGoogle Scholar
  10. 10.
    Jayani Yekta M.M.: Fast design of relatively wide band fractional delay all-pass filters. Signal Process. 88(3), 612–623 (2008)CrossRefGoogle Scholar
  11. 11.
    Bensouici, T., Charef, A., Abdelliche, F.: Digital IIR Filter Approximation of the Fractional Delay Operator. In: Proceedings of 7th International IEEE Multi-Conference on Systems, Signals and Devices, pp. 1–6. Amman, Jordan, June 27–29 (2010)Google Scholar
  12. 12.
    Proakis J.G., Manolakis D.G.: Digital Signal Processing: Principles, Algorithms, and Applications, 3rd edn. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  13. 13.
    Chen Y.Q., Moore K.L.: Discrete schemes for fractional-order differentiators and integrators. In: IEEE Trans. Circuits Syst. I 49(3), 363–367 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Petras I., Podlubny I., O’Leary P., Dorcak I., Vinagre B.M.: Analogue Realization of Fractional Order Controllers. TU Kosice, Fakulta Berg (2002)Google Scholar
  15. 15.
    Sabatier, J. et al. (eds.): Advances in Fractional Calculus: Theoretical Development and Applications in Physics and Engineering. Springer, The Netherlands (2007)Google Scholar
  16. 16.
    Monje C.A., Chen Y.Q., Vinagre B.M., Xue D., Feliu V.: Fractional-Order Systems and Controls Fundamentals and Applications. Springer, England (2010)zbMATHCrossRefGoogle Scholar
  17. 17.
    Ortigueira M.D.: Introduction to fractional signal processing. Part 2: discrete time systems. IEE Proc. Vis. Image Signal Process. 147(1), 71–78 (2008)CrossRefGoogle Scholar
  18. 18.
    Charef A.: Analogue realization of fractional order integrator, differentiator and fractional PIλDμ controllers. IEE Proc. Control Theory Appl. 153(6), 714–720 (2006)CrossRefGoogle Scholar
  19. 19.
    Ogata K.: Discrete-Time Control Systems. Prentice Hall, Englewood Cliffs (1987)Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Laboratoire de Traitement du Signal, Département d’ElectroniqueUniversité Mentouri-ConstantineConstantineAlgeria

Personalised recommendations